Gkamai

Cloud Embed User Guide

April 27, 2022

Contents

Welcome to Akamai Cloud Embed..............ooooiiiiiiiiniiemrerrrr e 3
LA Tz L = T O B TSRO POPP 3
You should be familiar with these termS.........ooi e 4
The Akamai Cloud Embed WOrKFIOW.........oo i e e e e 8

The base configuration vs. the delivery poliCy........cccooiiiieccrr s 10

Set up a base configuration..............co————— 1"
BEfOr YOU DEGIN.eeiiiieieieeeieeieeee e e e e e e e e e e e e e e e e e s e — e a e e e e re et e e aaaaaaaaaaeaaaaaan 11
(O =T LI I Lo o o] o T= o P UEESPRPRER 14
Define property NOSINAMES.cooo oo e e e e e e aaaaaaaaeaeeeaaaaan 15
Configure the "Default RUIE"........ ... o ettt e et e e e 24
REVIEW the OINEI TUIES.........co e s s e e eesnnnennes 43

Set up subcustomers viathe ACE APL......... et r s s ssnas s s e s eenas 49
Before you begin With the AP ... et e e e s et e e e e e e e e e e e e e anas 49
RegiSter SUDCUSIOMETS. ...ttt e e e e e e e e e aaaaeeeeaseaeaaaaaaannnnnnnnees 50
Create a delivery policy for each SUDCUSIOMET ... 52

Other recommended tasks..........couiiiiiiiiiiiiseeemerrrr s mmn e e e e e 72

o - 75

Add dynamic web content support for a subcustomer.............ciiimmiimic 76
Prerequisites for dynamiC Web CONTENT...........ooiiii i 76
Set up dynamiC WED CONLENT.o et e e e e e e e e e e e e e e 78

Add live video support for a subcustomer...............cccoiiiiiiiiiiieeeece e —————- 82
Set UP liVE VIAEO 1N @ POLICY ...eeii ettt e e e et e e e e e e et e e e e e e s snnneeeeeeeeennnneeeens 82

Add on demand video support for a subcustomer...............ccooiiiiiiie 86
Enable on demand video in your base CONfig...........ouiiiiiiiiiii e e 86
Set UP ON dEMANA VIAEO........cce e e e e e e e e e e e e e e e e e et a e e e e e e e eeaaaaaaaaeeeeaseeeaaanannns 88

Add prefetching support for Video.........coo i 91
What can be PrefetChed.o e e ettt e e e s et e e e e e e e aeeeaaeas 93
Use the Origin-asSist SCNEME........ccoi it r e e e e e e e e aaaeaeeeeeeaaeaaaanns 94

Add large file delivery support for a subcustomer...........cccoomimmiiemscccciiiii s 98
PrEIEQUISITES.ottt e e e e e e e e e e e e e e et e et e e e e eeeeeeeeeeeae b b aaaaaaaaas 98
10 o] o o) u i (o) gl P=T o [= TR 1 =T e (=YY oSSR 100

Upgrade a request from HTTP to HTTPS.......cooo i 103

The Akamai Cloud Embed AP V2........ . ssmmmnnn s 105
The ACE AP WOIKFIIOW. ...ttt e ettt e e e e e e ean et e e e e e e annbeeeeaeeaannneeeaeeeannes 106

(R TST0 10 [(7= 107

DAt e 125
0] £ TR 176
What's new With CloUud EmMDBeEd............oeimimii e e s s s s s s sn s sn s snssnssnsnnsnnnnnnn 178
[\ o] 1o = 180

Welcome to Akamai Cloud Embed

Akamai Cloud Embed (ACE—formerly Wholesale Delivery) provides the features and APIs necessary for
you, acting as our partner, to deliver the benefits of a content delivery network (CDN) to your customers
("subcustomers") at scale.

With a combination of the Property Manager tool in Control Center and the ACE API, you can configure
CDN features per domain and give a subcustomer the ability to purchase, configure, and monitor Akamai's
CDN services directly through your custom portal.

What is a CDN?

At its most basic level, a content delivery network (CDN) can greatly improve the end-user experience of a
website or application by moving cacheable content closer to that end user.

Akamai Cloud Embed (ACE) CDNs use our Edge network servers to cache and deliver this content. There
are definite benefits to delivering content through our Edge servers:

* You'll see faster delivery of content to the end user
* You'll accomplish offload of processing from the origin server
* You'll get reduced egress bandwidth from the origin server.

When content is delivered from a server near the end user, the shortened distance reduces latencies. As a
result, duplicate requests for the same content (for example, 10,000 end users all requesting the same video
of a cat) can be handled at the Edge servers. So, the request load and bandwidth use at your origin server is
greatly reduced. This frees the origin server to handle more unique requests, or requests for dynamic
content.

How is the CDN put in place?

Put simply, you place the Edge network between the end users and the origin server through a simple
reassignment of the domain name for website or application your customer (our "subcustomer) owns. For
example, imagine the mapping from the website domain to the origin server IP was direct, like this:

Website hosthame Origin server IP

www.example.com 93.184.216.34

The Edge network can be inserted by generating a CNAME of the website to the Akamai domain, which
points the end user request to the Akamai Edge server IP, rather than to the origin server.

Website hostname Akamai edge hostname Edge server IP
www.example.com www.example.com.akamaiedge. | 184.51.102.67
net

The Akamai Edge server then uses a separate hostname when addressing the origin server:

origin hostname origin server IP

origin-www.example.com 93.184.216.34

How are CDN behaviors configured?

When an end-user request arrives at the Akamai Edge server, the server understands how to handle the
request by consulting a "base configuration" you've set up for your customers' websites or applications, and
a "delivery policy" you've set up comprised of settings for a specific subcustomer."

The Edge server looks at the Host : header value in the request, and then finds the corresponding property
configuration file for that website or application. You set up this configuration using the Property Manager in
Control Center (recommended), or via the Property Manager API. You apply general rules for caching,
authorization, origin server location, and other services, that apply to all subcustomers.

You also set up a "delivery policy" for each subcustomer, to define match criteria and behaviors to apply to
requests that come in for that specific subcustomer's website or application. This is done via the ACE API.

You should be familiar with these terms

Before you get started with Akamai Cloud Embed (ACE), you should be familiar the following concepts and
terms.

ACE-specific concepts and terms

These terms and concepts are specific to Akamai Cloud Embed and its usage, and are called out throughout
this documentation. Terms are ordered based on their importance.

Concept/Term Description

Cloud Partner These are Akamai resellers or partners who
provide delivery services to their customers. As a
user of ACE, you are a cloud partner. (This
documentation is focused toward the cloud
partner.)

subcustomer As a cloud partner, your customers are
subcustomers. Akamai does not assign individual
Content Provider (CP) codes to subcustomers
even though their traffic is sent over the Akamai
platform. A cloud partner has access to usage
detail reports for each subcustomer, based on the
subcustomer IDs you provide Akamai.

subcustomer ID This is a unique ID controlled by you, as our cloud
partner, that you establish for each subcustomer
within your own billing systems. All traffic for a
particular subcustomer is rolled up by this ID for
billing purposes.

Base Configuration This configuration includes all of the common
rules used to process end-user requests via your
subcustomers. You use the Property Manager in
Control Center (or the Property Manager API) to
set up this configuration. This is similar to an
individual "Property Configuration" that you set up

Concept/Term

Description

to use any of our other delivery products (AMD,
DD or OD). However, with ACE, a base
configuration serves as a single configuration that
you apply for use with multiple subcustomers.

@ Note: The terms "base configuration,”
"property configuration,"
"configuration," and "configuration file"
are used interchangeably to describe
this component.

Subcustomer behavior

In Property Manager, this is the specific behavior
you use to control which individual ACE (and
optionally ICA) features are available to handle
your subcustomers' traffic. You can set up this
behavior to provide access to all available
features, or you can select a subset of features to
define different classes of service.

Policy

Policies determine how Akamai Edge servers
handle a given subcustomer's requests. A single
policy is bound to a specific property hostname,
that has been defined in a specific base
configuration. Your policy JSON is made up of
rules, which contain both match criteria and
behaviors. When an incoming request meets the
match criteria in a rule, it triggers the behaviors
listed in that rule. Within a policy, rules must be
unique: they can't have identical sets of matches.
A policy can also contain up to 100 behaviors.

Policy Rules

These rules include both policy match criteria and
policy behaviors. When an incoming request
meets the match criteria in a rule, it triggers the
behaviors listed in that rule. You can use each
match type and each behavior once in a policy
rule. Also, no one rule can contain both a whitelist
and blacklist behavior of a given type. For
example, you can add an IP whitelist and a
referrer blacklist to a rule, but you can't have both
an IP whitelist and IP blacklist in the same rule.
Rules are applied from top to bottom and should
be listed from least restrictive (top) to most
restrictive (bottom). For example, you would list a
match on url-wildcard value /* first, because
it would apply to all requests, where /images/*
would only apply to a subset of requests.

Policy Matches

Within a policy rule, a policy match defines which
subcustomer requests receive the policy
behaviors within the rule. All match conditions for
a rule must evaluate to "true" in order for the
behaviors to apply. When constructing matches in

Concept/Term

Description

a rule, the type of data you enter depends on the
type of match. For example, if you use the query
string match, you have to enter the exact string
and keep case sensitivity in mind. If you use the
url-scheme match, you enter either HTTP or
HTTPS. Within a match, you cannot repeat entries
in the value string.

Policy Behaviors

Policy behaviors are used to encapsulate
customizable settings. Behaviors are a part of a
policy's rules. A rule can have many behaviors or
only one. With ACE, you group rules into policies.
You can have a maximum of 100 behaviors in a
subcustomer policy. Policies exceeding 100
behaviors are rejected upon submission. Within a
behavior, you cannot repeat entries in the value
string.

Content Characteristics-Dynamic Web Content
Behavior

Include this behavior if you've included
acceleration via ICA to your ACE instance, and
you only want to enable specific ICA optimizations
for your subcustomers. (Contact your Account
Representative for more information on ICA.)

InstantConfig Behavior

If your subcustomers only send HTTP traffic, you
have to add this behavior to your base
configuration. This behavior, also known as "Multi-
Domain Configuration,” lets you associate multiple
web assets to a single property without adding
each hostname separately. It applies property
settings to all incoming hostnames based on a
DNS lookup.

Generic Terms

These terms describe general components used throughout Akamai, and also apply to ACE.

Concept/Term

Description

Content Provider (CP) Code

This is an identifier for a particular subset of
content on your Origin Server. Some features are
applied individually to particular CP codes. CP
codes are also used to provide additional
granularity in reports and to track billing. You'll
have at least one CP code per contract. Also, a
CP code is associated with a single contract.

Property Configuration

See Base Configuration.

Property Hostname

This is an identifier that is used to determine which
base configuration file to use when processing
end-user HTTP/HTTPS requests for a
subcustomer's resource. Often, the Property
Hostname is the fully qualified domain name of the
endpoint subcustomers use to access your cloud

Concept/Term

Description

partner CDN. For instance, www.mycdn.com
would be your endpoint domain name and your
Property Hostname. A property hostname is
sometimes referred to as a "digital property," too.

DNS Record

This is a record that associates a Domain Name to
an IP address.

Edge Hostname

This describes your specific cloud partner
subdomain on an Edge network domain. It maps
incoming requests to our Edge servers. You
generate a "property hostname to Edge hostname
association" to determine an Edge hostname. For
example, assume the endpoint that subcustomers
access is www.mycdn. com. This would serve as
the property hostname in this association that
results in the Edge hostname,
www.mycdn.com.akamaized.net. An end-user
request for a subcustomer's assets is ultimately
directed to this Edge hostname. In turn, the Edge
hostname resolves the request to individual
servers on the Edge network, where the
associated base configuration is read to determine
how to process the request.

Edge Server

This is a server in the Akamai Edge network that
ultimately receives end-user requests from
subcustomers. (End user requests to the
subcustomer's hostname are redirected to an
associated Edge hostname which resolves to the
Edge Server.)

Forward HOST Header

The name the Edge server forwards (often to the
Origin Server) in the HTTP Host request header,
sometimes also referred to as the expected host.
Often, this is the same name as the Property
Hostname.

Origin Server

The server where subcustomer content is housed
to be served to end users (where your site/
application resides). Edge servers read first from
the applicable subcustomer's policy for origin
information, and second from the Origin Server
settings applied in your base configuration.

Origin-server Hostname

The Hostname that maps to your Origin Server
from which Edge Servers retrieve your content.
The usual syntax of the Origin-server Hostname is
the Property Hostname preceded by “origin” and a
hyphen.

The Akamai Cloud Embed workflow

Configuring Akamai Cloud Embed (ACE) for your customers involves various steps, that need to be

performed in a specific order.

Review the table that follows to get an idea of the tasks required, and order they need to be performed.

Step

Description

Step 1: Enable ACE

Contact your Account Representative to enable
ACE for your account.

Step 2: Determine the delivery method

Are subcustomers delivering content via HTTP or
HTTPS?

« HTTPS (and HTTP, if applicable) traffic:
Contact your Account Representative to
create a secure ACE property and
provision the necessary certificates. This is
the preferred configuration for Akamai
Cloud Embed.

» HTTP traffic, only: Contact your Account
Representative to request a Multi-Domain
Edge Hostname and create an
InstantConfig property. A Multi-Domain
Edge Hostname lets you use a single
hostname to represent multiple web
assets.

@ Note: This step only applies at this
phase if you're using the Property
Manager API to generate your ACE
base configuration. If you're using the
Property Manager in Akamai Control
Center to generate the configuration,
you can set all necessary options to
define the delivery method there.

Step 3: Create an origin hostname

If you don’t already have a hostname to identify
the origin server separate from public hostnames,
you need to create one. You do this by creating a
DNS record for your origin IP. The origin hostname
is used by Akamai edge servers to locate your
origin server. For example, you might create the
hostname origin-www.example.com to point
to the IP address of your origin server, if your
public hostname is www.example.com.

Note: This isn't necessary if you're
using NetStorage as your origin.

Step

Description

Step 4: Create a test hostname

Until you've completed configuration and testing of
your service, you'll use a test hostname to access
the Akamai network. You do this through CNAME
of a test hostname to the applicable Edge
Hostname.

Step 5: Create the ACE Base Configuration

Here, you use the Property Manager in Control
Center to create a configuration file that controls
how all traffic from subcustomers is served via
Akamai Edge servers. Most cloud partners only
need one base configuration. So, we suggest that
you contact your Account Representative for
suggestions on the best configuration for your
specific use case.

Step 6: Set up use of the ACE API

You need to obtain API credentials for use, and
enable use of the API using the Control Center.

Step 7: Add APIs to Your Customer Portal

Integrate the applicable ACEAPIs into your
customer portal, so that subcustomers can apply
desired settings for delivery of their content.

Step 8: Other recommended tasks

There are tasks that are not strictly required to
implement ACE. However, they are associated
with your application, or are highly recommended.
This includes things such as configuring log
delivery and reporting.

Step 9: Testing

Test the end-to-end CDN functionality with
subcustomers. You should use a test domain to
validate both the functionality and the ACE base
configuration.

Step 10: Going Live

For the final step to go live, you need to change
the DNS to switch subcustomer websites or
applications to the Akamai platform.

The base configuration vs. the delivery policy

In your ACE instance there are two separate "configurations" that need to be generated. Before you get
started, you should know the difference between the two.

The base configuration

In the simplest of terms, this configuration defines which subcustomers can access your ACE CDN, and
what those subcustomers can and can't do. (All subcustomers associated with a base configuration are
subject to its rules and behaviors.) You use our Property Manager application (either in Control Center or via
its API) to define these settings.

The delivery policy

This is a configuration that you generate for each specific subcustomer. Using the ACE API, you set up a
delivery policy to include subcustomer-specifc rules to supplement the rules defined in the base
configuration.

Set up a base configuration

The ACE base configuration refers to the settings and options you set up for use by our Edge network
servers. Edge servers communicate with your origin server(s) to fetch, cache or process content, and
subsequently serve that content to the requesting client.

We recommend you use the Property Manager in Control Center

You can use either the Property Editor interface in Control Center, or the Property Manager APls (available
via developer.akamai.com) to create this configuration. Typically, this is a one-time process. So, for ease-of-
use, we recommend that you use the Property Manager Ul in Control Center to set up your base
configuration.

With this in mind, this document only covers the use of Ul to create the configuration. (Use of this APl is not
covered here.)

How many configurations should | have?

Typically, as a cloud partner, you should only need one base configuration. However, you can have multiple
base configurations to manage multiple permutations of your network settings. You can also have multiple
base configurations to support the different use cases of your customers.

So, before you go on with this process, you may want to contact your Account Representative for
suggestions on the best configuration for your specific use case.

Note: This documentation uses the terms base configuration, configuration and
configuration file interchangeably.

Before you begin

There are several things you need to do before you get started. This includes various internal and external
tasks, such as gathering relevant information used in creating the ACE property, generating a certificate for
HTTPS delivery (if applicable), and other considerations.

Enable ACE for your account
Before you can begin, you need to get Akamai Cloud Embed added to your contract.

Contact your Account Representative to get it added. Work with your rep to determine all relevant needs.
Your rep can also give you an estimate on how long it will it will take to fully provision ACE for access.

Do you want to add acceleration features?

If so, let your representative know that you want to add support for the Integrated Cloud Accelerator (ICA)
feature.

You need to gather specific information
There are specific pieces of information you'll need while creating a base configuration.

Get your account information

Within five days of your service contract submission, you should receive your account information. If you
haven't received it (or you don't have it), you can get it from Akamai Business Services
(specialist@akamai.com).. You need this information to activate your configuration for use with ACE.

You should receive the following information:
* Your account name and ID
+ Content provider (CP) codes. These are used for reporting and billing.
* An administrator login. This is used to access the following:
— Akamai Control Center. https://control.akamai.com

— Content Storage Servers. This applies if you've included storage (NetStorage) in your
service package, for use as the origin to deliver content.

Additional items you'll need

In addition to information provided to you by Akamai, you need some other information to complete set up.
(Some of these values are gathered during the processes discussed in this documentation.)

* Know your Endpoint Domain: This is your unique hostname, that you use to serve as your Akamai
Cloud Embed CDN. (You need to have subcustomers CNAME to this endpoint—End-user requests
to each subcustomer domain will be resolved to this endpoint, and ultimately to your Edge server
hostname to access the base configuration.) This serves as the "Property Hostname" when
generating a "property hostname to edge hostname" association for the base configuration.

+ Know the Origin Server Hostname: This applies if you or a subcustomer is housing deliverable
content in a custom origin. (You are not using NetStorage as your the origin.) This is used for Edge
servers to fetch target content for a request.

+ Make note of your Edge Server Hostname(s): You generate a "property hostname to Edge
hostname" association, that results in your Edge server hostname. This associates your endpoint
domain with Akamai edge servers. This is done in the Property Editor, while setting up your base
configuration. Your endpoint domain must later be CNAMEGA to this Edge server hostname to finalize
the process ("Go Live").

Secure delivery (HTTPS)

For secure access (HTTPS), Akamai Edge servers deliver via HTTPS, only if the client request is made over
HTTPS.

You can create a custom certificate in Control Center

You don't need to provide an existing SSL certificate. You can create and activate a custom one via the
Certificate Provisioning System (CPS) in Akamai Control Center, and then apply it in your ACE base
configuration when creating it in Control Center. This is the recommended practice for this process.

Create the certificate before the configuration

When using the Property Manager Editor to create a Property Hosthame for your base configuration, you'll
notice a button you can use to create a new certificate. Don't use this. You'll need to wait for the certificate to
complete provisioning before you can finish your base configuration. You may need to abort the
configuration process if the certificate takes too long to provision.

Cregate NeWaCertifigate

To streamline the process, create the certificate first using the Certificate Provisioning System (CPS),
separately in Control Center.

Note: These instructions don't cover the full use of CPS, just what's required for this
process. See the online help for CPS for complete details on its use.

1. Log in to Control Center using an administrator-level User ID and Password.
. Select CONFIGURE > Certificate Provisioning System.

. Click Create New Certificate.

A W DN

. In section 1 - Select Validation Type, choose the desired level of validation. Keep in mind that the
more extensive the validation, the longer it takes to provision the certificate.

5. In section 3 - Enter Certificate Information, input all applicable hostnames ("vanity domains") you
use for your website or application, in the Common Name (CN) field. (When a request originates
from one of these hostnames, an Edge server will deliver content.)

6. Set the desired security level in section 6 - Select Network settings:

+ Deployment Network: Select either Standard TLS (Standard: SOX and ISO compliant) or
Enhanced TLS (Advanced: PCI, SOX, ISO and FedRAMP compliant).

* SNI-Only: Set to "On" if you want to extend upon TLS. Ensure that your environment can
support it.

7. Review and confirm creation of the certificate.
How long does it take for the certificate to provision?

The time it takes can vary, based on all of the settings you've applied for the certificate. Typically, a
certificate with Domain Validation and Standard TLS applied can take 60 minutes to provision, but an
Enhanced TLS certificate can take considerably longer, ranging from three to six hours.

The Control Center user account that created the certificate will receive an email when the certificate has
complete provisioning.

Are you using your own SSL certificate?

You can't set up SSL service through the edge network without Akamai first receiving or obtaining your
certificate information and setting up for it. You'll need to work with your Account Representative to do so.

You can use our shared certificate

We offer a secure certificate for HTTPS delivery (you don't have to create a custom one). However, this
requires that you use our specific "shared certificate hostname" in the URLs that must be provided to end
users to access content. You define your own unique property hosthame to add to the shared certificate
hostname to build this URL. (For example, "mypropertyhostname.akamaized.net.") This is all accomplished
via the generation of a Property Hostname in your ACE configuration.

The SSL certificate must exist on all origin servers

If you are using a custom origin (not NetStorage), you need to maintain a valid SSL certificate on all origin
servers that will be contacted by the Edge network, if you want to maintain HTTPS security throughout the
request. (This includes the client to Edge server, then origin to client for delivery.) The SSL certificate name
should be the same name as your Property Hostname.

You need these advanced behaviors

Before your Akamai Cloud Embed base configuration is complete and ready for production traffic, you need
to add some Advanced Behaviors to it.

Work with your Account Representative to ensure that all of the following have been applied:

* Incorporate the FOSSL hack. This supports the real origin domain in the origin certificate by adding
the origin domain as an allowed CN.

» Set the appropriate PARTNER _DOMAIN_SUFFIX variable definition.
+ Setthe reporting:log.product-info to"On."
+ Setthe reporting:media-delivery.type to "wsd."

* Auto-enable the Subcustomer Enablement behavior.

Create a new property

If you're setting up a new ACE base configuration, you first need to set up a new "Property" via Akamai
Control Center.

1. Select the appropriate Control Center Account. Use the top-right pull-down in the header to select
the account.

2. Open the application. Go to Bl > CDN > Properties. Click New Property.

3. Select the Wholesale Delivery radio button from the Product list.

Note: "Wholesale Delivery" is the legacy name of this product. A future
release of this toolset will update this value to "Akamai Cloud Embed."

4. If more than one Contract is shown, choose the one that has Cloud Embed on it. You are not sure,
contact your Account Representative.

5. In the Property Name field, enter a desired name for the ACE base configuration. This serves two
purposes:

» The filename for the configuration, and
* How it will be displayed for access throughout the Property Manager Uls in Control Center.
6. Click the Create Property button.

The Property Manager Editor window launches showing the default settings for the new property. Use the
settings here to define your ACE configuration.

Define property hostnames

You use this content panel to associate your cloud partner endpoint to an Akamai Edge hostname. A
"property hostname" association plays a key role in getting subcustomer sites, applications or content out to
our Edge servers, for access to requests from subcustomer clients.

rty Hostnames

st one property hostname is required.

s Property Hostname Edge Hostname IF

roperty hostname by clicking Add

Once set up, a request from an end user to a subcustomer resource is resolved by the Edge hostname. The
request is routed to our Edge servers that then read your ACE base configuration to determine how to serve
requests for subcustomer content.

The property hostname

This is an identifier that is used to determine which base configuration file to use when processing end-user
HTTP/HTTPS requests for a subcustomer's resource. Often, the Property Hostname is the fully qualified
domain name of the endpoint subcustomers use to access your cloud partner CDN. For instance,

www .mycdn . com would be your endpoint domain name and your Property Hostname. A property hostname
is sometimes referred to as a "digital property," too.

Wild Card Usage

You can use an asterisk (*) to indicate a wild card for a subdomain in a property hostname. On the top level,
this causes all hostnames for that domain to use the associated base configuration. For example, if you set
up a property hostname as *.example.com, both www.news.example.com and
www.uk.news.example.com use the configuration.

Note: You must own the truncated portion of the domain when using a wildcard-
enabled property hosthname. Using the example above, you must own "example.com."

The edge hosthame

This describes your specific cloud partner subdomain (endpoint) on an Edge network domain. It maps
incoming requests to our Edge servers. You generate a "property hostname to Edge hosthame association"
to determine an Edge hostname. For example, assume your endpoint that subcustomers access is

www .mycdn . com. This would serve as the property hostname in this association that results in the Edge
hostname, www.mycdn.com.akamaized.net. An end-user request for a subcustomer's assets is
ultimately directed to this Edge hostname. In turn, the Edge hostname resolves the request to individual
servers on the Edge network, where the associated base configuration is read to determine how to process
the request.

Note: Edge Hostnames aren't used to directly serve content (unless leveraging a
Shared Certificate for HTTPS delivery—see the table in the section that follows). Edge
Hostnames are used only to resolve your content to the Edge network.

Edge host naming conventions

The standard format for Edge hostnames varies for non-secure (HTTP) and for secure (HTTPS) web sites
and applications. The table that follows shows some Edge hostname examples.

Content type Property Edge hostname Description

hostname
Non-secure www.mycdn.com | www.mycdn.com.mdc.aka Instant Config Hostname is a
HTTP (via maized.net tool in Property Manager
Instant Config that allows you to quickly
Hostname) create an Edge hostname

using a fixed domain
—.mdc.akamaized.net

Secure HTTPS secure.mycdn. secure.mycdn.com.edge When you've applied a
(via custom com key.net custom certificate to a
certificate) property configuration, the

associated Edge hostname

Content type Property Edge hosthame Description
hostname

uses the .edgekey.net
domain.

Secure HTTPS mycdn- (none) When using our shared

(via Shared com.akamaized certificate, your Property

Certificate .net hostname and the Edge
hostname are the same
value.

How to set up a property hostname

You'll use Property Manager for this, and the process is predominantly the same regardless of product. To
maintain consistent instructions, this process is covered in the Property Manager documentation.

Property hostname use cases
Here are a few use case examples that address each delivery type, both secure (HTTPS) and non-secure
(HTTP).

Each of the use cases begins with the notion that as a Cloud Partner, you operate one or more domains that
are directly related to their various PaaS/laaS offerings, as either of the following:

+ The DNS name published to "End-Clients" (browsers, applications, media players, etc.) in a fully-
qualified URL.

* The origin hostname to which requests to vanity hostnames may be directed—typically, via a DNS
CNAME record, and, especially, when there is no CDN in the request flow.

The various use cases are described with this domain in mind, and they are separated into two primary
groups: “HTTP-Only” and “HTTPS.” HTTPS refers to the capability of securing communication between the
Akamai platform and the browser, using standard TLS certificates, but that HTTP communication is also
supported for these subcustomer without any special requirements. For the purposes of illustration, these
examples use the following:

* The hypothetical Cloud Partner domain cloudplatform.net.

* When referring to HTTPS delivery, examples use a Cloud Partner subdomain
secure.cloudplatform.net. (The “secure” record name is not technically required.)

Use case 1: HTTP-only, using a partner-owned DNS name

This use case involves usage of cloud partner-managed DNS hostnames to serve content to end-clients via
the Akamai CDN.

For example, {sub-customer-prefix}.cloudplatform.net

Value Example

Partner Domain
cloudplatform.net

Value

Example

End-Client-facing Domain CNAME

{sub-customer-
prefix}.cloudplatform.net {TTL} IN
CNAME
cloudplatform-net.mdc.akamaized.net

Example End-Client-facing Domains

static.sub-
customer.com.cloudplatform.net
2358c713-a9dad7£fd-
£838£d35-8c85b331.cloudplatform.net

Complete End-Client CNAME Chain

static.sub-
customer.com.cloudplatform.net.
{TTL} IN CNAME

cloudplatform-
net.mdc.akamaized.net.

cloudplatform-
net.mdc.akamaized.net. 21600 IN
CNAME

al234.dscwld.akamai.net.

al234.dscwld.akamai.net. 20 IN A
72.246.199.74

This use case is based on our Multi-Domain Configura-tion (MDC) solution via an "Instant Config
Hostname." When using the example domain cloudplatform.net in this example, a hypothetical
CNAME chain observed by End-Clients might be as shown above. As the Cloud Partner, you can choose
the {{TTL}” for the CNAME to the mdc.akamaized.net hosthame. However, anything less than five (5)

minutes is considered too low.

Note: Default TTLs are provided in the example for the remainder of the CNAME

chain.

In addition, the Cloud Partner must provide a separate origin DNS hostname or IP address for each Sub-
Customer domain. There are two possible mechanisms for deriving the origin DNS name:

1. RECOMMENDED: As the Cloud Partner, you can use the ACE API to create a content delivery
policy with an “origin” behavior for each subcustomer. This delivery policy may use the IP address of
the origin that would normally have been handed out when the delivery policy is served without
Akamai; that is, the A record that would normally be returned by the your DNS for the subcustomer

hostname.

However, we recommend that you use a separate DNS hostname in the “origin” behavior to allow
migration of subcustomer origin IPs between your cloud partner data centers without having to

update each subcustomer delivery policy.

2. You can configure a static value as a prefix in front of the End-Client-facing hostname. For example,
the base configuration can apply a default delivery policy that concatenates a static prefix, for
example “origin-" and the End-Client domain. In such cases, the “origin” behavior is not required.

Following the example above, as the Cloud Partner, you need to provision a DNS entry for origin-
static.sub-customer.com.cloudplatform.net. This mightlook like the following:

origin-static.sub-customer.com.cloudplatform.net. {TTL} IN A 77.76.75.74

As the Cloud Partner, you can also optionally do the following:

+ Set the TTL. Set it to a minimum of one (1) minute, with five (5) minutes (or more) being the
recommended value.

+ Use additional intermediate CNAMESs or use DNS-based load balancing. For example, you could
use Akamai’s Global Traffic Management solution.

Use case 2: HTTP-only, using a custom/vanity DNS name

This use case refers to using “vanity” hostnames such as “static.{subcustomer}.com” where the
subcustomer owns the DNS names used to serve content to End-Clients.

Value Example

Partner Domain
cloudplatform.net

End-Client-facing Domain CNAME

{sub-customer-vanity-domain}.
{TTL} IN CNAME
cloudplatform-net.mdc.akamaized.net

Example End-Client-facing Domains .
static.sub-customer.com

www.other-sub-customer.com

Complete End-Client CNAME Chain - Example

1: subcustomer hostname direct to Akamai. static.sub-customer.com. {TTL} IN

CNAME
cloudplatform-
net.mdc.akamaized.net.

cloudplatform-
net.mdc.akamaized.net. 21600 IN
CNAME al234.dscwld.akamai.net.

al234.dscwld.akamai.net. 20 IN A
72.246.199.74

Complete End-Client CNAME Chain —
Example 2: Sub-Customer hostname direct to
Cloud Partner intermediate hostname to
Akamai.

static.sub-customer.com. {TTL-1}
IN CNAME

static.sub-
customer.com.cloudplatform.net.

static.sub-
customer.com.cloudplatform.net.
{TTL-2} IN CNAME

Value Example

cloudplatform-
net.mdc.akamaized.net.

cloudplatform-
net.mdc.akamaized.net. 21600 IN
CNAME al2?234.dscwl4d.akamai.net.

al234.dscwld.akamai.net. 20 IN A
72.246.199.74

This use case is based on our Multi-Domain Configuration (MDC) solution via an "Instant Config Hostname."
The subcustomer who owns the DNS zone will do either of the following:

+ CNAME the End-Client-facing hostname directly to the Cloud Partner’s MDC hostname (as in
Example 1).

* CNAME to your Cloud Partner-operated intermediate hostname, that in turn is CNAMEd to the
Akamai MDC hostname (as in Example 2).

In both cases, the time to live (TTL) for the vanity hosthame CNAME record is determined by the
subcustomer In the second example, { TTL-1} is also determined by the subcustomer, but as the cloud
partner, you determine {TTL-2}.

The intermediate hostname is optional. However, to ensure that you (as the Cloud Partner) maintain control
of when and how a CDN is implemented, this is strongly encouraged. A common CNAME can be used for all
subcustomer. An example might be something like the following, where a more generic cdn record replaces
the more specific static. {subcustomer}.com” record in your Cloud Partner DNS configuration:

static.sub-customer.com.cloudplatform.net. {TTL-1} IN CNAME

cdn.cloudplatform.net. cdn.cloudplatform.net. {TTL-2} IN CNAME cloudplatform-
net.mdc.akamaized-net.

cdn.cloudplatform.net.mdc.akamaized.net. 21600 IN CNAME
al234.dscwléd.akamai.net.

al234.dscwld.akamai.net. 20 IN A 72.246.199.74

You can determine the origin domain when the origin you are hosting it, or by the subcustomer when hosted
elsewhere. It should be configured for each End-Client-facing hostname; multiple origins are supported
based on specific match criteria.

Use case 3: HTTPS using a cloud partner-owned DNS name: wildcard certificate

Some subcustomers may want to serve content securely using one of your Cloud Partner-managed DNS
namespaces.

Value Example

Partner Domain
secure.cloudplatform.net

Value Example

End-Client-facing Domain CNAME

[sub-customer-
prefix].secure.cloudplatform.net
{TTL} IN CNAME
secure.cloudplatform-
net.edgekey.net

Example End-Client-facing Domains
secure-sub-customer-

com.secure.cloudplatform.net
2358c713-a%dad7£fd-
£838£d35-8c85b331.secure.cloudplatf
orm.net

Complete End-Client CNAME Chain

secure-sub-customer-
com.secure.cloudplatform.net.

{TTL} IN CNAME
secure.cloudplatform.net.edgekey.ne
€o

secure.cloudplatform-
net.edgekey.net. 21600 IN CNAME
al234.dscel6.akamai.net.

al234.dscel6.akamai.net. 20 IN A
184.24.175.127

In this example, let's assume that you operate one or more Cloud Partner infrastructure domains where
each subcustomer is given a unique prefix, for example:

{sub-customer-prefix}.secure.cloudplatform.net

To configure secure delivery, we deploy a separate certificate, in which the Common Name (CN) is a
wildcard DNS name * . secure.cloudplatform.net, and the Akamai Secure Edge Hosthame CNAME,
secure.cloudplatform.net.edgekey.net is provisioned to ensure that the correct certificate is
returned to the End-Client.

The Akamai server requires a separate DNS hostname to use as origin. The origin- prefix method works,
as well as the practice of creating an origin behavior for each subcustomer as shown in .

For subcustomers that provision their own certificates (non-recognized CA or even self-signed certificates),
the integration requires that you use Akamai Control Center (or the Property Manager API) to configure the
origin certificate and trust chain details individually on behalf of the subcustomer.

Note: This method doesn't use the ACE API. It requires the Property Manager API to
properly configure the origin security settings.

Use case 4: HTTPS using a custom/vanity DNS name: shared cert

Here, we use a “vanity” hostname for HTTPS traffic, and the subcustomer owns the DNS names used to
serve content to End-Clients.

Additionally, the subcustomer doesn't require a vanity TLS certificate. (Other subcustomer hostnames may
exist in the list of supported Subject Alternative Name (SAN) entries in a single TLS certificate.)

Value Example

Partner Domain
secure.cloudplatform.net

End-Client-facing Domain CNAME

{sub-customer-vanity-domain}.
{TTL} IN CNAME

{cert-
identifier}.secure.cloudplatform-
net.edgekey.net

Example End-Client-facing Domains
secure.sub-customer.com

shop.other-sub-customer.com
api.another-customer.com

Complete End-Client CNAME Chain - Example

1: subcustomer hostname direct to Akamai secure.sub-customer.com. {TTL} IN

CNAME
san8.secure.cloudplatform.net.edgek
ey.net.

san8.secure.cloudplatform.net.edgek
ey.net. 21600 IN CNAME
el235.dscel6.akamaiedge.net.

el235.dscel6.akamaiedge.net. 20 IN
A 184.24.170.18

Complete End-Client CNAME Chain —
Example 2: subcustomer hostname direct to
Cloud Partner

secure.sub-customer.com. {TTL-1}

IN CNAME

secure.sub-
customer.com.secure.cloudplatform.n
et.

secure.sub-
customer.com.secure.cloudplatform.n
et. {TTL-2} IN CNAME
san8.secure.cloudplatform.net.edgek
ey.net.

san8.secure.cloudplatform.net.edgek
ey.net.21600 IN CNAME
el235.dscel6.akamaiedge.net.

el235.dscel6.akamaiedge.net. 20 IN
A 184.24.170.18

With this example, you (as the Cloud Partner) can support hundreds, or even thousands of these vanity
DNS hostnames using shared SAN certificates. Multiple certificates are required to support such large

numbers of hostnames, because a single TLS certificate has an overall size limit. Each SAN has a hard limit
of 100 alternative name entries, but we recommend that you keep the max closer to 40 entries for best
performance.

The Time to Live (TTL) for the vanity hosthame CNAME record is determined by each individual
subcustomer. (This is the second example { TTL-1}, above.) Being the cloud partner, you determine
{TTL-2}.

In this case, you can adopt a pattern to relate a collection of DNS names to a single TLS SAN certificate. For
example:

san{n}.secure.cloudplatform.net

* {n}: This could be a simple index/counter for each SAN certificate you're using. You can create and
modify certificates (add or remove hostnames) via the CPS API, via the CPS Ul in Control Center, or
you can work with Akamai Professional Services (at a cost) to implement them for you.

For example, a value of sanl.secure.cloudplatform.net might be used for the first SAN certificate.
This value is used by the back-end provisioning systems to define the Secure Edge Hostname for all SAN
entries in this certificate, and is suffixed with .edgekey.net. As an end result, you have

sanl.secure.cloudplatform.net.edgekey.net as the DNS name in this example. It refers to this
SAN and would support HTTPS delivery for any of the Subject Alternative Names added to the certificate.

Next, we use the sample subcustomer domain examples from the table above:
e secure.sub-customer.com
* shop.other-sub-customer.com.
Each subcustomer must CNAME to either:
* Your cloud partner-managed DNS name (that is in turn CNAMEAd to the secure Edge Hostname)
+ Directly to the secure Edge Hostname

The former lets you maintain control of the delivery and the associated certificate, and we recommend this
approach. This might look like the following pair of example CNAME chains to be created by the respective
Sub-Customers and in turn by you as the cloud partner:

secure.sub-customer.com. {TTL-1} IN CNAME
secure.sub-customer.com.secure.cloudplatform.net.

secure.sub-customer.com.secure.cloudplatform.net. {TTL-2} IN CNAME
san8.secure.cloudplatform.net.edgekey.net.

san8.secure.cloudplatform.net.edgekey.net. 21600 IN CNAME
el235.dscel6.akamaiedge.net.

el235.dscelb.akamaiedge.net. 20 IN A 184.24.170.18
shop.other-sub-customer.com. {TTL-1} IN CNAME
shop.other-sub-customer.com.secure.cloudplatform.net.

shop.other-sub-customer.com.secure.cloudplatform.net. {TTL-2} IN CNAME
san8.secure.cloudplatform.net.edgekey.net.

san8.secure.cloudplatform.net.edgekey.net. 21600 IN CNAME
el1235.dscelb.akamaiedge.net.

el235.dscel6.akamaiedge.net. 20 IN A 184.24.170.18

The CPS tool in Control Center and the deployed TLS certificate itself, show the list of alternate names in a
given certificate. However,as the Cloud Partner, it is your responsibility to maintain the relationship between
each vanity subcustomer domain and the Akamai Secure Edge Hostname to which the domain has been
associated. It is also your responsibility to ensure that no certificate is overloaded beyond the stated limits.

What about the origin server?

Similar to the other use cases, the Akamai server requires a separate DNS hostname to use as the origin.
The origin- prefix method works, so does creating an origin behavior for each subcustomer (just like
what we show in Use case 1: HTTP-only, using a partner-owned DNS name, above.)

When the intermediate hostname is not the same, the cloud partner DNS hostname that refers to the
subcustomer method you use to retrieve content can be configured as the origin domain.

If you have subcustomers who provision their own origin certificates you must use the Property Manager in
Control Center (or the Property Manager API) to configure the origin certificate and trust chain details
individually on behalf of the subcustomer. When setting up the certificate for this use case, use the Choose
Your Own option and a Trust setting of Custom Certificate Authority Set. Once set, you can add new
Certificate Authorities or Specific Certificates for self-signed certificates.

Configure the "Default Rule”

When defining behaviors for a new ACE base configuration, the Default Rule is automatically comprised of
various necessary and recommended behaviors.

It is a fixed rule, and it must be included in all ACE base configurations. (However, you can edit its individual
behaviors, as necessary.) In addition, the Default Rule has no Match Criteria, because its behaviors apply to
all requests.

i Review

v Property Configuration Settings

x ¥ Add Rule Default Rule

Default Rule

Content Compression

Default behaviors ar the property hostname(s).

Static Content

Dynamic Content Behaviors

Add Behavior

Default CORS Paolicy 3
I:.Tlrlgll'l Server

The Origin Server behavior

This required behavior offers options you use to control how the Edge network contacts an origin server to
retrieve website or application content.

Origin Server precedence and ACE

Edge servers read first from the applicable subcustomer's policy for origin server information, and second
from the Origin Server behavior settings in your base configuration. The origin server (and associated
information) set in a base configuration is only utilized if an origin server is not defined in the subcustomer's
policy.

Origin Server use cases with ACE

Setting up an origin server for ACE is different than setting one up for a traditional Akamaidelivery product. A
traditional product serves from a single origin to deliver your content. With ACE, you'll have multiple
(potentially 1,000s) of subcustomers using this configuration, so your origin server needs are different, and
this has a bearing on how you set Origin Server options. Consider the following use cases:

+ Typical use case - subcustomers have their own origin servers: If this is the case, you would set
Origin Settings in the base configuration to serve as a "backup," and you would provide specific
origin server information in each subcustomer's policy.

+ subcustomers are using your origin server: If you maintain your own origin server for all of your
subcustomers, or are using NetStorage as the origin server, you would provide origin server
information in your base configuration, and you'd set the Origin slider in the Subcustomer
Enablement behavior to "Off." This way, subcustomer origin server data can't be set in a policy, and
the origin you've set in the base configuration will be used, instead.

Cloud Embed User Guide © 2022 Akamai Technologies 25

* A mix of both: Here, you'd perform what's discussed in "Typical use case - subcustomers have their
own origin servers." However, for the subcustomers you want to use your origin server, you'd need to
ensure that origin server information is left out of the subcustomer policy.

Note: Regardless of your desired use case, Origin Server behavior settings are
required in the Default Rule in a base configuration.

Available settings in this behavior vary based on the selected Origin Type.

| selected "NetStorage" as my Origin Type
This is the case if you're using NetStorage as your origin to house Subcustomer website or application
content.

The following additional options and recommended settings are available when you select NetStorage as
your Origin Type:

origin Server

Origin Type MetStorage W

NetStorage Account

NetStorage Account

Click this field to select the appropriate NetStorage download domain. This is the name of the domain set up
for use with this application on your NetStorage account. Once you assign the download domain, Property
Manager automatically assigns the root directory (for example, /R3131), so that content is retrieved from the
appropriate location.

You need to set a supported Caching Option

With NetStorage set as your origin, you cannot have your Caching behavior set to either "No Store" or
"Bypass Cache." Set the Caching Option to the appropriate setting for your instance.

Additional recommendations

Once you set NetStorage as your origin, we have a couple of suggestions:

+ Add Cache HTTP Error Responses as an optional behavior. To do so, click the Add Behavior
button, select Cache HTTP Error Responses, and click Insert Behavior. In the newly added
behavior, set Max-age to 30.

» The Cache Key Query Parameters behavior should be set to "Exclude all parameters."
NetStorage doesn't honor query strings, so you should set this to avoid duplicate cache keys for the
same object. Click the Add Behavior button, select Cache Key Query Parameters, and click Insert
Behavior. Set the drop-down to Exclude all parameters.

| selected "Your Origin" as my Origin Type
This is the case if you're using your own custom origin to house target content.

The following additional options and recommended settings are available when you select Your Origin as
your Origin Type:

Origin Server

Origin Type Your Crigin W
Origin Server Hostname

|vanabke suppor)

Forward Host Header Incoming Host Header W

Cache Key Hostname Origin Hostname W

Supports Gzip

Compression

Send True Client IP |
Header

HTTP Port 20

Origin Server Hosthame

Input the value that points to the same IP address as the origin domain name. We retrieve content from this
address. This has various requirements and options for use:

(- Tip: Make note of the value input here for later use.
+ There are naming conventions. An Origin Server Hostname must follow a specific naming
convention: origin-<original origin hostname>:
— origin-: This is a fixed value: the word origin, followed by a hyphen (-).

— <original origin hostname>: This is the name that is expected to appear in the host
header.

+ The DNS must be edited. Generation of this configuration does not implement or activate your

Origin-server Hostname. Once set, the DNS record for your existing Origin Server needs to be
modified using this hostname (either by you or your DNS administrator). You ultimately need your

Cloud Embed User Guide © 2022 Akamai Technologies 27

origin's DNS record to point to the same server IP address as this ACE configuration. For example, if
the original DNS record contains:

www.mymedia.com. IN A 1.2.3.4
The edited record should contain:

origin-www.mymedia.com. IN A 1.2.3.4

+ Don't use IP addresses as Origin Server Hosthames. While IPv4 or IPv6 format addresses are
supported, they are not recommended, as they can change or be reassigned, which may render your
domain unreachable (resulting in a denial of service).

* This option supports variable expression syntax. Typing “{{" in the option field will trigger variable
to auto complete. Additional details on this support are available by mousing over this option in the
Ul and clicking the “Learn more about variable support” link.

Forward Host Header

Select the host header you want the product to pass to your origin server. This is referred to as the "Forward
Host Header" because it is the hostname the product “forwards” to the origin server in the HTTP HOST
request header. The web server on your origin server uses this value to determine what content to send.
Typically, the expected host is the same name as the hostname received in the request, or it can be
customized. The following are available:

* Incoming Host Header (Default): When selected, the same name as the hostname received in the
request is used. This is a generic option that varies with the hostname received in the request. For
example, a request for www .mymedia.com sends www.mymedia.com the HOST header; while a
request for test-www.mymedia.com sends test-www.mymedia.com as the value.

+ Origin Hostname: When selected, what you've set as the “Origin Server Hostname” is sent in the
request to your Origin Server. Select this option if your Origin Server has been configured to listen for
the Origin Server Hostname. For example, if a request for either www.mymedia.com or test-
www.mymedia.comis sent, origin-www.mymedia.com is sentin the HOST header in the request
to the Origin Server.

» Custom Value: Select this option if the hostname is a different name than the one the Origin Server
is expecting. For example, an end-user request for www.mymedia.com.akamaized.net can set
www .mymedia.com as the value sent in the HOST header to your Origin Server.

Cache Key Hostname

The cache key is the information the product uses to identify the content in caches. Assuming your
application includes at least some cacheable content—the Edge network uses keys based on the entire
Origin Server URI path and query string, if there is one. The following selections are available:

» Origin Hostname: All objects requested using this Origin Server Hostname and the same path and
query string are treated as the same object, including the content served from any other
configuration with the same Origin Server Hostname. For example, once cached, these objects
would be treated as the same object:

http://www.mymedia.com/logo.gif
http://www.mymedia.co.uk/logo.gif

* Incoming Host Header (Virtual Server Option). Objects requested with the same path and query
string are given a unique cache key per hostname. Select this option if your origin server is a virtual
server. For example, once cached, these objects are treated as different objects:

http://www.mymedia.com/logo.gif
http://www.mymedia.co.uk/logo.gif

Supports Gzip Compression

Compression is important in optimizing performance. You can disable this option only if your Origin Server
does not support delivery of content using Gzip compression; or, if for some reason you want to have
content served uncompressed. When this feature is enabled, the product sends an Accept-Encoding:
gzip header in requests to the Origin Server to support Gzip compression.

Send True Client IP Header

When this slider is set to Yes, the IP address of the requesting client is passed to the origin. Normally the
client IP is passed in the Xx-Forwarded-For header, which is routinely modified by proxies along the way.
Once enabled, additional options are offered:

* True Client IP Header Name: Input the name of the header that contains the True Client end-user IP
address. This is typically the True-Client-IP header, which is input here by default.

+ Allow Clients to Set: Set this slider to "Yes" to have the Edge server that receives the request allow
the True Client IP Header and pass that value through to the origin, or set it the "No" to remove it and
set the value itself.

HTTP Port

This exists as a standalone option when your ACE configuration is setup to exclusively deliver non-securely
via HTTP. This is the port on your origin server you want our Edge server to connect to for non-secure HTTP
requests. The standard port is 80. To learn more about ports, mouse-over this option and click the “Learn
more” link.

Origin SSL Certificate Verification

These options are revealed if the ACE configuration is set up for secure delivery (HTTPS). They allow you to
control how your Origin Server is authenticated. They are intended to prevent 'man-in-the-middle’' (MITM)
attacks, in which a malicious entity directs end-user traffic to the attacker's server, instead of the expected
Origin Server.

When an Edge server routes a request to your Origin Server, it establishes a secure connection through an
SSL handshake; your Origin Server provides the Edge server with a certificate which is used to validate it as
your Origin Server. If everything is validated, the request goes forward. If the certificate is not valid, the
action you set in the ACE configuration for invalid certificates occurs.

'

Origin $5L Certificate Verification

Verification Settings Use Platform Settings v
Use SNI TLS Extension No
Ports
- iy
HTTP Port 80 —

HTTPS Port

Note: The settings you choose in Origin SSL Certificate Verification override the
default settings for your ACE configuration.

Verification Settings: The Secure Network platform has default settings for Origin SSL Certificate
Verification that can be overridden by a ACE configuration. The platform, by default, trusts certificates
signed by the certificate authorities in the Akamai Certificate Store that also have a CN/SAN that
matches the Forward Host Header.

— Use Platform Settings: This allows Edge servers to choose these settings on your behalf,
trusting certificates signed by any authority listed in the Akamai Certificate Store. These
settings are subject to change at any time.

— Choose Your Own (Recommended): Select this to maximize security by directly controlling
which certificates Akamai Edge servers should trust. (Once selected, additional options are
revealed to configure this.)

— Use SNI TLS Extension: Set this slider top "Yes" to have the Edge server send the Server
Name Indication (SNI) header in the SSL request to your origin. The SNI header is comprised
of the same information contained in the header you have selected as the Forward Host
Header value.

Ports:

— HTTP Port/HTTPS Port: These are the ports on your origin server you want our Edge server
to connect to for non-secure HTTP and secure HTTPS requests, respectively. The standard
ports are 80 for HTTP and 443 for HTTPS. To learn more about ports, mouse-over either of
these options and click the “Learn more” link.

- Tip: To learn more about any of these options, mouse over their names in the Ul.

Content Provider Code and ACE

Content Provider (CP) codes are numeric IDs assigned to client requests in your configuration. These codes
are used to identify your content for billing, logging, reporting, and cache purging. This is a required
behavior.

Content Provider Code

Content Provider Code Create new

The Content Provider Code option in Content Provider Code must not be empty.

Your Akamai account representative assigns you a CP code for use with ACE, typically during initial setup.
To set the CP code for this behavior, perform either of the following:

» Click the Content Provider Code field. A drop-down shows a list of CP codes that have already
been configured for use with ACE, and are available to the user account that's currently logged in to
Control Center.

+ Click Create new... If your Control Center account has access to do so, you'll see this button in the
behavior. Click it to create a new CP code. The default name for the new code is what you've set for
your ACE Property Name, but you can change it if you want. A new CP code may take upwards of
two hours to propagate to our network. You'll have to wait for it to finish before you can save your
ACE property, and go on to test and activate it.

@ Note: If you get an error when selecting an existing CP code, are told you have no
more CP codes available when you click the Create new... button, or you don't have
access to that button, contact your local Akamai administrator or your Akamai account
representative for help creating a new code.

The Caching behavior

This behavior lets you specify basic caching behaviors for our Edge servers. You can define how responses
should be cached, for how long, and whether the response can be served stale if the origin server cannot be
reached to re-validate the response.

Caching

Caching Option Cache W
Force Revalidation of Stale Always revalidate with origin b
Objects
~ i »
Max-age 60 seconds b

You can select from the following options:

* No Store (default): Content is served directly from the specified origin, and any versions in the cache
are cleared.

» Cache: Content is cached, based on additional settings that are revealed:

— Force Revalidation of Stale Objects: Once content remains in cache for a predetermined
amount of time (either what's been defined specifically for the origin, or what's been set in the

Max-age field), it is considered "stale." Select how you want requests for cached content to
be handled once that content is stale:

— Serve stale if unable to validate: The request tries to re-validate with the origin to
get the content, but if it can't the "stale" content is served.

— Always revalidate with origin: The request only serves content that has been re-
validated from the origin. (The request is retried until revalidation occurs, or it times
out.)

— Max-age: Set the amount of time that content will be cached if the origin does not specify
one.

» Bypass cache: Content is served from the specified origin, but cached versions of the content are
not removed. This may be useful for certain subcustomers. For example, if using central
authorization, bypass the cache for the client request. If end users are authenticated, they are
redirected to the cached content. (Otherwise, a login module could be returned.)

* Honor Origin...: You can choose to honor the caching settings defined in origin response headers:
Honor Origin Cache Control, Honor Origin Expires), or both. When you use origin response
headers, you also set a Default Max-age to use if the relevant origin header is not found or is invalid.
You van also optionally enable support for caching settings that may be set in "Private” and "Must-
Revalidate" response headers, by setting the applicable switches to Yes.

The Log Request Details behavior

This behavior lets you select the HTTP Request Headers and Cookies you want in included in your Akamai
Log Delivery Service (LDS) reports.

Log Request Details
Log Host Header Off
Log Referer Header | Off
Log User-Agent Header m
Log Accept-Language Off
Header
Cookie Mode Log some cookies b
Cookies sessionid X
Include Custom Log Field m
Custom Log Field My Host Header

Log Host Header: This header specifies the domain name of the server (for virtual hosting), and
(optionally) the TCP port number on which the server is listening.

Log Referer Header: This header contains the address of the previous web page from which a link
to the currently requested page was followed. The Referer header allows servers to identify from
where people are visiting.

Log User-Agent Header: This header contains a characteristic string that allows the network
protocol peers to identify the application type, operating system, software vendor or software version
of the requesting client.

Log Accept-Language Header: This header advertises which languages the client is able to
understand, and which locale variant is preferred.

Cookie Mode: Select the cookies to be logged—Don't log any cookies, Log all cookies or Log
some cookies. Selecting the latter reveals a separate field that you click to select the desired cookie
format to capture, "sessionid", "user_local". You can also click the field and manually input the
name of an applicable cookie format you want to use. (After which, you need to click the <input
name> (new item) option in the drop down to add it.)

Include Custom Log Field: Set this switch to "On" to reveal the Custom Log Field. Manually input
an applicable log format that you want included in the logs.

Note: The Custom Log Field is truncated to no more than 40 bytes of data. Also, the
information as it appears in the logs is escaped per rfc1738.

The Subcustomer Enablement behavior

This behavior in your Akamai Cloud Embed base configuration allows you to control which individual
features can be included and set in a Subcustomer's "policy."

A policy is a set of rules and behaviors that are applied when an end user requests a specific Subcustomer's
content. You use the ACE API to create individual Subcustomer policies. (They are defined in a PUT body
component included with a specific call from the APL.)

This behavior lets you enable or disable various options to limit the use of specific behaviors in Subcustomer
policies.

Important: What you set here applies to all subcustomers assigned to this base
configuration. For example, if you set an option to "Off," any subcustomer assigned to
this base configuration cannot configure the associated behavior in their policies. If
you want the subcustomer to access a behavior, ensure it's set to On."

Dynamic Policy

This switch enables Subcustomer Enablement settings.

Set to "On™: This is typical. It applies if you want to set up individual policies for each Subcustomer.
You can enable/disable individual behaviors to meet your needs. (If disabled, that specific behavior
can't be modified in an individual Subcustomer policy.)

Set to "Off": This is uncommon, and only applies to some lesser-used use cases (for example,
Subcustomer level billing, when different delivery configurations are not required, or for domain
validation for certificates). Talk to your Account Representative for more details on these uses cases.

Partner Domain Suffix

Input the appropriate domain suffix. This is typically the same value you've input for use as your property
hostname. We use this value internally to support two things:

Domains need to be flagged as trustworthy or acceptable ("whitelisted") for access by our Edge
servers. Domain information is typically gathered from the Origin Server information defined in a
Property Manager configuration. However, since an origin can be set dynamically via a policy in ACE,
we whitelist the suffix you input here, and add it internally to all origin domains for this purpose.

We use VIP-based slot-matching in secure ACE configurations. As a result, URL Purge doesn’t work
for vanity domains. So, you need to use this suffix to the domain names while making purge
requests. For example, to purge abc. com/somepath should be requested as abc.com.<partner
domain suffix>/somepath.

Optional Subcustomer Enablement Settings: Quick Reference

The remaining settings here can be enabled to customize these settings on a per-Subcustomer basis, by
generating a policy using the ACE API.

Setting Description Additional Reference

Origin

+ Setto "On": An
individual Subcustomer's
policy can include

Setting

Description

Additional Reference

settings to define a
custom origin server,
with all associated
settings. (What's set for
a policy's origin overrides
what's set for the Origin
Server behavior. If no
origin settings are
applied in a policy,
what's set for the Origin
Server behavior is used.)

+ Set to "Off": A
Subcustomer policy
cannot include origin
server information. This
applies if you want to
use the origin you've set
as the Origin Server
behavior for all of the
Subcustomers that are
associated with this base
configuration.

Caching

+ Set to "On": You can
specify caching settings
in an individual
Subcustomer's policy.
What you set for a policy
caching settings will
override what you've set
for the Caching behavior
here in the base
configuration. (If caching
settings are not applied
in a policy, what's set for
the Caching behavior is
used.)

+ Set to "Off": You can't
change caching settings
for a Subcustomer via a
policy. What is set here
in the base configuration
for the Caching behavior
will be used for all
Subcustomers.

Setting

Description

Additional Reference

Referrer Allow/Block

Set this to "On" to allow
dynamic setup of a referrer
whitelist (allow referrers) or
blacklist (deny referrers) in the
policy for each Subcustomer.

IP Allow/Block

Set this to "On" to allow
dynamic setup of an IP whitelist
(allow specified IP addresses) or
blacklist (deny specified IP
addresses) in the policy for each
Subcustomer. Set to "Off" to
block the inclusion of IP
whitelists/blacklists in a
Subcustomer policy.

Geo Allow/Block

Set this to "On" to allow the
inclusion of a geographic
regions whitelist (allow specified
continents, countries, regions
and mesignated market areas—
DMAs) or blacklist (deny
specified geographic regions) in
the policy for each
Subcustomer.

Content Refresh

If you set this to "On" you can
set up content revalidation
schedules for each
Subcustomer in the associated

policy.

Modify Forward Path

When set to "On", you can
dynamically modify the request
path to the content server for
each Subcustomer in the
associated policy.

Cache Key Query Arguments

When set to "On" you can apply
various settings in
Subcustomers' policies to
customize which query string
arguments can be included in
the Akamai Edge server cache
entry (cache-key).

Token Authentication

Set this to "On" to configure
whether or not Edge servers can
control access to Subcustomer
content through the use of
tokens. (The token can be
transmitted in the client request

Setting

Description

Additional Reference

in a cookie, header, or query-
parameter.)

Site Failover

Set this to "On" to allow
configuration of a unique
failover site in each
Subcustomers' policy.

Content Compressor

Set this to "On" to configure file
compression on a per
Subcustomer basis, via their
unique policy.

Access Control

Set to "On," you can deny
requests to a Subcustomer's
content based on certain match
conditions.(You set up these
match conditions in the
Subcustomer's policy.)

Dynamic Web Content

When set to "On" you can apply
various settings to
Subcustomers' policies to
support and streamline the
delivery of dynamic web
content.

How to add dynamic web
content support for a
Subcustomer

Streaming Video On-demand
Delivery

Set this switch to "On" to allow
addition of streaming on-
demand video support via a
Subcustomer policy.

How to add streaming video
support for a Subcustomer

Large File Delivery

When set to "On" you can apply
various settings in
Subcustomers' policies to
support and streamline the
delivery of large files (up to 1.8
GB in size).

How to add large file delivery
support for a Subcustomer

The InstantConfig behavior

Enable this option to apply settings in this base configuration to all incoming requests for subcustomer
hostnames, without explicitly adding those hostnames to the base configuration.

Once enabled, you don't need to manually add each applicable hostname as a Property Hostname to this
base configuration. However, it only applies to non-secure (HTTP) hostnames. So, this base configuration

can only process HTTP requests.

How do | set this up?

To start, you need to set up a non-secure HTTP Property Hostname. For example, you could use the Add
Instant Config Hostname functionality via the Property Hostnames content panel.

fig Hostname

using Instant Config, when this property is activated we will create an edge hostname that points to Akamai's serve
me (e.g., wew.example.com) to that edge hostname (e.gQ.. www.example.com.mdc.akamaized.net).

: prefix may use only alphanumeric and hyphen characters, length 4-60. The prefix may not begin or end with a hyp

e cdnedge.cloudpartner.net mdc.akamaized.net IPv4 +

Canc

With the base configuration saved, you need to do the following:

1. Create an endpoint for subcustomers, and have them CNAME to this endpoint. For example, a
subcustomer "abc.com," would need to CNAME to your endpoint,
"abc.cdnedge.cloudpartner.net."

2. Create a wildcarded (*) DNS record to CNAME all of your subcustomers to the Edge hostname
created with the non-secure HTTP Property Hostname you set up in this base configuration. For
example, "* . cdnedge.cloudpartner.net" would need to CNAME to
"cdnedge.cloudpartner.net.mdc.akamaized.net."

You only need to perform both of the steps above a single time, unless you need to change the hostname.

The Allow POST behavior

Use this behavior to set whether POST requests sent to your specified Origin Server should be accepted by
an Edge server.

By default, we allow requests to your Origin using HTTP GET or HEAD methods. Set this switch to "On" if
you also want to accept POST method requests to your Origin Server.

-()- Tip: If all requests to an Origin Server—either a fixed one you've set here in the base
configuration, or an "override" one you define in an individual subcustomer's policy—
are non-POST, consider setting this switch to "Off" to deny POST requests and
potentially improve security.

Allow without Content-Length

If desired, you can allow POST calls without a Content-Length header.

By default, a POST request to an Edge server must contain a Content-Length header. (This is an HTTP
RFC standard.) The server will return an "HTTP 411 - Length required" error, even if a POST request does
not include a body (and therefore, shouldn't require a Content-Length Header).

Cloud Embed User Guide © 2022 Akamai Technologies 38

If you enable this option, the Edge server assumes a POST request without a Content-Length header has
no body. So, it adds a Content-Length header with the value of "0" to the forward request, unless the request
is using Transfer Encoding.

When Transfer Encoding is used, a request can exclude the Content-Length header.

The Allow PUT behavior

Use this behavior to set whether PUT requests sent to your specified Origin Server should be accepted by
an Edge server.

By default, we allow requests to your Origin using HTTP GET or HEAD methods. Set this switch to "On" if you
also want to accept PUT method requests.

@ Note: If PUT is used, content is not cached.

The Allow DELETE behavior

Use this behavior to set whether DELETE requests sent to your specified Origin Server should be accepted
by an Edge server.

By default, we allow requests to your Origin using HTTP GET or HEAD methods. Set this switch to "On" if you
also want to accept DELETE method requests.

@ Note: If DELETE is used, content is not cached.

Allow Body

Set this to "On" if your setup requires inclusion of a message body with a DELETE request. (This is not
common.)

Auto Domain Validation
This behavior enables the automatic renewal of Standard TLS Domain Validated certificates.

With Domain Validation (DV), the applicable certificate authority (CA) validates that you have control of the
domain. (DV is the lowest level of validation.) The Certificate Provisioning System supports DV certificates
issued by Let’s Encrypt, an automated, and open CA that is run for public benefit. Certificate expiration is
typically as follows:

» Akamai-managed DV certificates expire in 90 days.
* Renewals for Akamai-managed DV certificates start 16 days prior to expiration.

+ A third party, customer-supplied, DV certificate can expire whenever the applicable certificate
authority determines it expires; this behavior is not necessary for customer-supplied DV certificates.

When should I include this behavior?

If you are using Standard TLS DV certificates for the hostnames in this property, you should include this
behavior to enable automatic renewal of the certificate. If you leave this behavior out, the certificate could
expire, and HTTPS traffic will be served with certificate errors.

This behavior is not required for any Enhanced TLS cetrtificates.

How is this behavior supported?

You can include this behavior in your property in multiple ways:

* You can include it in the Default Rule. In this case, it is applied to all requests for all resources
associated with this property.

* You can include it in a supplemental rule. This allows you to set up a custom rule that only applies
to specific requests for resources associated with this property. This rule must use only the
"Hostname" condition match criteria.

* It can be applied in multiple rules. Rule priority applies, with rules lower in the order taking
precedence.

* There might be an issue if an incoming request matches another "redirect” behavior. Assume
that the incoming request matches another behavior you have in your property that results in a
redirect operation similar to what applies with this behavior. If so, the operation that takes
precedence depends on where the behavior is in the property.

— If you are using a similar behavior, ensure that behavior exists in a rule that is higher in
ordering.

— You should test on your configuration on staging by making a request to
www . yourdomain.com/well-known/acme-challenge/some random token.

You can configure optional behaviors

These behaviors depend on what's generally available for use with ACE, as well as any optional behaviors
you may have purchased separately.

@ Note: Some of the additional features are simple, while others require specialized
knowledge. It is beyond the scope of this document to list and discuss all available
features and options. Behaviors in the Property Editor in Control Center offer "?"
buttons you can use to obtain more information, or you can contact your Account
Representative for guidance.

Content Characteristics - Dynamic Web Content
This behavior and its options allow support for Integrated Cloud Acceleration (ICA). ICA allows you to add

more support for Dynamic Web Content for your customers ("Subcustomers") via your Akamai Cloud Embed
CDN.

Prerequisites

* You need ICA added to your contract. Talk to your account representative about adding this to
your contract to use this support.

* You need "Dynamic Web Content" enabled. To include the Content Characteristics - Dynamic
Web Content behavior, you must enable the Dynamic Web Content option in the Sub-Customer
Enablement behavior for an ACE base configuration. Also, the Content Characteristics - Dynamic
Web Content behavior must be added to the same rule that contains the Sub-Customer Enablement
behavior, in which you've enabled the Dynamic Web Content option.

What do these options do?

If you enable any of these options, you can configure them for individual Subcustomers. For example, if you
enable SureRoute, you can granularly apply settings for it—enable it, disable it or apply other settings—for
each Subcustomer. This configuration is done by generating a policy for that Subcustomer using the ACE
API, and defining settings via the content-characteristics behavior.

If an option is left at "Off," you can't configure settings for it via a Subcustomer policy.
See Add dynamic web content support for a subcustomer on page 76 for full details on use.

Content Characteristics - Streaming Video On-demand

This behavior allows you to set various optimizations for the delivery of on demand video for your Akamai
Cloud Embed (ACE) CDN customers (our "Subcustomers").

Note: This behavior is used exclusively in base configurations for the Akamai Cloud
Embed (ACE) product.

Prerequisites

* You need "Streaming Video On-demand Delivery" enabled. To include the Content
Characteristics - Streaming Video On-demand behavior, you must enable the Streaming Video On-
demand Delivery option in the Sub-Customer Enablement behavior for an ACE base configuration.
Also, the Content Characteristics - Streaming Video On-demand behavior must be added to the
same rule that contains the Sub-Customer Enablement behavior, in which you've enabled the
Streaming Video On-demand Delivery option.

What do these options do?

Use the settings here to optimize video on-demand streaming for all Subcustomers registered with this ACE
base configuration.

You can override any of the settings on a per-Subcustomer basis by generating a policy for that
Subcustomer using the ACE API, and defining settings via the content-characteristics behavior.

Note: If a media format—Enable HLS, Enable DASH, etc.—is set to "Off" in this
behavior, it is disabled for all Subcustomers registered with this base configuration.
(You cannot configure settings for it via a Subcustomer policy with the ACE API.)

See Add on demand video support for a subcustomer on page 86 for full details on use.

Content Characteristics - Large File
This behavior allows you to optimize the delivery of large files for your Akamai Cloud Embed (ACE) CDN
customers (our "Subcustomers").

Note: This behavior is used exclusively in base configurations for the Akamai Cloud
Embed (ACE) product.
Prerequisites

* You need "Large File Delivery"” enabled. To include the Content Characteristics - Large File
behavior, you must enable the Large File Delivery option in the Sub-Customer Enablement behavior

for an ACE base configuration. Also, the Content Characteristics - Large File behavior must be
added to the same rule that contains the Sub-Customer Enablement behavior, in which you've
enabled the Large File Delivery option.

What do these options do?

Use the settings here to optimize delivery of large files for all Subcustomers registered with this ACE base
configuration.

You can override the Origin Object Size setting you define in this behavior on a per-Subcustomer basis by
generating a policy for that Subcustomer using the ACE API, and using the appropriate settings in the
content-characteristics behavior.

See Add large file delivery support for a subcustomer on page 98 for full details on use.

Real-time Reporting

Once added to your base configuration and enabled, this behavior gathers reporting data for Akamai Cloud
Embed (ACE) at near real-time latencies—typically, less than 15 minutes. This lets you generate related
reports at an aggregation interval of one minute.

Get this provisioned for use

This must be provisioned and added by your account representative ("rep"). Your account rep works with
you to determine the applicable ACE base configuration, or create a new one to add this support. Once
provisioned, you can view it as a behavior in that base configuration. (You can't edit these settings or
remove this behavior. Only your account representative can do this.)

The settings apply as follows:

+ Enable Real-time Reporting. When enabled, you have access to Real-time reports for ACE, via
Media delivery reports in Control Center or the Media Delivery Reports API. Reports data is available
at a latency of under 15 minutes.

+ Advanced. Offers access to additional options. (It must be enabled to get access to the Beacon
Sampling Percentage option.)

+ Beacon Sampling Percentage. How much of your overall ACE traffic should be polled to collect
data. Your account rep can access and set this option to best address the capacity and limitations of
the downstream systems that receive and process data for your real-time reports. (A capacity is set
in an attempt to reliably deliver and process data at the expected 15 minute latency, for your
environment.) If this is not specifically set, the default is 10%.

Real-time Reporting

Enable Real-time Reporting

Advanced

el

Beacon Sampling 10 —
Percentage

What does the behavior let me do?

With provisioning completed and the behavior added, you can access real-time reports data for that base
configuration from either the Akamai Control Center or the Media Delivery Reports API.

* Control Center. Go to B > MEDIA > Media delivery reports, and then select Akamai Cloud
Embed > Realtime from the menu.

* Media Delivery Reports API. This gives you access to the "Get Akamai Cloud Embed Real-time
data" operation in the API.

Review the other rules

Once you’ve reviewed and configured the behaviors in the Default Rule, it's important to review each of the
additional rule-based behaviors that are also automatically included in your base configuration. For each of
these, you should check that the behavior is appropriate, and that the match criteria is properly scoped.

The Content Compression rule

This rule checks values in the Content-Type header an origin response and enables compression for the
specified content.

Cloud Embed User Guide © 2022 Akamai Technologies 43

Content Compression

Criteria | match An Add Match

If =

Content Type b

[¥F]
=
=
[1%]
=
=1

teximiml®* X | | fextfcss® X | | applicationt-javascript* X

Behaviors Add Behavior

Last Mile Acceleration (Gzip Compression)

i

Compress Besponse Always . 4

Criteria

You should review the list of Content Types in the match and update the list as needed. For example, you
may prefer not to compress JavaScript content, so you would remove the application/x-javascript content
type from the listing. If you click in the blank area of the listing, you’ll see that text/xml and text/plain are
already suggested additions to the match values. You can click the blank area of the listing and type any
Content-Type string to add it to the list. (It appears in the drop down, accompanied by "(new item)." Click
the entry to add it.) Use the wildcard (*) at the end of your string to ensure that additional characters in the
Content-Type definition don’t prevent the match from succeeding.

The Last Mile Acceleration (Gzip Compression) behavior

The Compress Response option is set to Always by default. The specified Content Types are compressed
when the requesting end-user agent (browser or device type) supports Gzip unzipping. This can improve
transfer times to clients with slow connections. Consider the following if you want to enable Last Mile
Acceleration (LMA):

+ LMA is only useful for certain Content Types. This includes HTML, JavaScript, or UTF-8
character encoded, and then when the content is larger than roughly 10 KB.

* LMA should be avoided with other Content Types (outside of what's listed above). For
example, don't use it to compress images that are already compressed, or to compress small files
that require more time to compress, send, and unzip, than would actually be saved in transmission
time.

* You can also choose to use what's set in your origin response headers for compression. If
your origin headers already explicitly describe how compression shoiuld be handled for your content,
set this to Same as origin response.

The Static Content rule
This rule adjusts the cacheability settings based on the file extension of requested content.

Static Content
s
Criteria = maten Al Add Match
If =
File Extension W is one of W

aif X||aiff X ||au X | avi X | bin X | bmp X | cab X | carbh X | |cct X || cdf X | [class X || css X

-\W I ————— tmmm———e - e

F 4 oo | | webhp s | | pr X [Toop X | | woap X || pict X || o X bt X [omwo X | omial & m X

eof M || woff | off X ||(svg X || svgz X ||jar X | | wofi2 X

Behaviors Add Behavior
Caching
Caching Option Cache v
Force Revalidation of Stale Serve stale if unable to validate W
Objects
Max-age 1 : days s

Remove Vary Header

Remove Vary Header r|

Cloud Embed User Guide © 2022 Akamai Technologies

Criteria

You should carefully review the list of file extensions in the match criteria to make sure they represent
cacheable content for subcustomers' sites. Add or remove new extensions as necessary. Only the
extensions set here will have the Behaviors in this rule applied in regards to caching.

The Caching behavior

If appropriate, you should also adjust the settings in this rule's Caching behavior. (Settings are identical to
the Caching behavior set in the Default Rule.)

Important: The settings in this rule override whatever you may have set for the
Caching behavior in the Default Rule.

The Remove Vary Header behavior

By default, an Edge server fielding a request from a subcustomer site will not cache an object with an HTTP
Vary header in the response, unless that response is a compressed object, and the response headers
include both vary: Accept-Encoding and Content-Encoding: gzip headers. If this is always the
case with subcustomers, set this switch to Off.

However, some applications add the HTTP Vary header even when the content does not vary. In that case,
set this switch to On to have the Edge server remove the header so that the content may be cached.

The Dynamic Content rule
This rule lets you adjust how cacheability headers (Cache-Control and Cache-Expires) should be sent.

Dynamic Content

Criteria | match A Add Match

If B

Response Cacheability W is not b Cacheable W
Behaviors Add Behavior

Downstream Cacheability

Caching Option Pass cacheability headers from origin b

By default, options are set so that any response that is not cacheable on the Edge server is delivered to the
client using the what a subcustomers has configured in the Cache-Control and Cache-Expires headers
sent by the origin server.

The Default CORS Policy rule

This rule includes multiple instances of the Modify Outgoing Response Header behavior, predefined with
recommended values. (They are applied as "recommended behaviors.")

Each individual header is populated with recommended values as follows:

Cloud Embed User Guide © 2022 Akamai Technologies 47

Behaviors
Modify Outgoing Response Header
Action Modify

Select Header Name Access-Control-Allow-Crigin

Mew Header Value

vanabie supporn)

Avoid Duplicate Headers ' Mo

Modify Outgoing Response Header

* Access-Control-Allow-Origin: This is populated with the value “*” to indicate "all."

* Access-Control-Allow-Methods: This is populated with the following request methods, GET, POST
and OPTIONS.

* Access-Control-Allow-Headers: This is populated with the values, “origin”, “range”, “hdntl”, and
“hdnts.”

+ Access-Control-Expose-Headers: This is populated with the values, “Server”, “range”, “hdntl”, and
“hdnts.”

+ Access-Control-Allow-Headers: This is set to “true.”.
+ Access-Control-Max-Age: This is set to “86400” seconds (or 24 hours).

This rule and its Behaviors are not mandatory, and can be removed (via the “X” icon in the Rule itself, or in
each Behavior), but it is recommended that they be left as is.

Set up subcustomers via the ACE AP

Once you have your ACE base configuration set, you need to perform several operations via the ACE API to
configure subcustomers.

The ACE API version

The current version of the ACE APl is 2.0. All services discussed in this documentation use this version of
the API.

Note: Other functions and services offered for use with ACE may use legacy or newer
versions of the API. They are covered in separate documents, where the required
version is specifically called out.

Before you begin with the API
To get up and running with the ACE API, you need to do a few things.

» To use this API and its core delivery, download, and video streaming capabilities, you need to add
ACE to your contract. To use the acceleration features, you have to sign up for Integrated Cloud
Accelerator (ICA).

 If your subcustomers support both HTTP and HTTPS traffic, contact Akamai to create a secure ACE
base configuration and provision the necessary certificates. Akamai recommends this configuration
for ACE. You can create this configuration yourself, using Property Manager in Akamai Control
Center.

* If your subcustomers only support HTTP traffic, contact Akamai to request a multi-domain edge
hostname and create an InstantConfig property. A multi-domain edge hostname lets you use a single
hostname to represent multiple web assets.

» Create an origin hostname. You need to create a hostname to identify a default origin server that is
separate from your subcustomer cloud origins.

+ Create an error page. Once you create a hostname to identify a default origin server, configure this
default origin to serve an error page when subcustomers don’t configure their domain correctly.

+ Determine the method to use to create subcustomer IDs. Each customer in your billing system who
uses your ACE implementation needs this ID. You can use any method to generate IDs as long as
the IDs are unique. Akamai rolls all traffic for a particular subcustomer into this ID for billing.

+ Add the Subcustomer Enablement behavior to your base configuration via Property Manager in
Akamai Control Center. Once added, you need to decide which ACE features you want to offer to
your subcustomers, and enable them accordingly. Your decisions determine the structure of your
policy JSON going forward. (Your policy JSON is made up of rules that include both match criteria
and behaviors for use with that specific subcustomer.)

* You need your propertyId. This is a unique value that is automatically generated for a base
configuration after you create it. This value is required in all ACE API operations. Contact your
Account Representative to get this value.

+ If you're using ICA, make sure you enable the Dynamic Web Content option in the Sub-Customer
Enablement behavior.

+ If you’re using a non-secure (HTTP), Multi-Domain Edge Hostname, enable the InstantConfig
behavior in your base configuration via Property Manager. InstantConfig lets you associate multiple
web assets to a single property without adding each hostname to the base configuration.

+ See the Akamai Developer documentation for details on how to set up and apply authentication
credentials and choose a supported developer interface to access the ACE API. To do this, you'll use
the Identity and Access Manager interface in Akamai Control Center. During the process, you need
to:

— Verify you have the API service named Wholesale Delivery. "Wholesale Delivery" is the
legacy name for Akamai Cloud Embed.

— Set the APl access to READ-WRITE. This gives you access to all of the operations in this
APIL.

— Note your Group name. Click Show additional details and review the Groups table to see
a list of groups. Make note of the Group name for your applicable group.

* We recommend that your review the AP/ concepts in The Akamai Cloud Embed API v2 on page
105topic to familiarize yourself with some of the common terms used in the API.

Register subcustomers

You must generate and register an ID for each subcustomer you wish to add to your base configuration. A
subcustomer ID is a mandatory element in various ACE API calls.

Before you begin: You need subcustomer IDs

When registering a subcustomer, you need to provide a unique ID—a "subcustomer ID". As the cloud
partner, it's up to you to determine a method to create these IDs and associate them with your
subcustomers.

Each subcustomer in your billing system who uses your Akamai Cloud Embed implementation needs an ID.
All traffic for a particular subcustomer is rolled up by this ID for billing.

subcustomer IDs have the following requirements and limitations:

+ Each subcustomer must have a unique ID.

+ The ID cannot be more than 50 characters.

» The ID can only consist of alphanumeric characters (a-z, A-Z, 0-9), dashes (" - ") or periods (" . ")
You should define subcustomer scope carefully, because it helps a great deal with billing and reporting.

How do I register a subcustomer ID?

This is accomplished by running the "Add a new subcustomer" operation via the ACE API. You'll need the
following values to run this operation:

* propertyId: Thisis a unique ID value that is generated and associated with a base configuration.
Contact your Account Representative for this value.

*+ sub-customerId: The ID you created for the subcustomer you wish to register with the named
base configuration (propertyId).

See the ACE API docs

Call formatting and other specifics are covered in the ACE APl documentation.

List all of your subcustomers

You can view basic details for all of the subcustomers you've registered for a specific base configuration.
This includes the geographic region ("geo") and the digital properties associated with the subcustomer.

This is accomplished by running the "List all subcustomers" operation via the ACE API. You'll need the
following values to run this operation:

* propertyld: This is the unique ID value associated with the base configuration that houses the
subcustomers you want to list. Contact your Account Representative for this value.

* network: This is the network version of subcustomers you want to list: production (live) or staging
(testing).

Call formatting and other specifics are covered in the ACE APl documentation.

View a specific subcustomer

You can implement an API operation to view the geographic region ("geo") associated with a specific
subcustomer.

This is accomplished by running the "Get a subcustomer” operation via the ACE API. You'll need the
following values to run this operation:

* propertylId: This is the unique ID value associated with the base configuration that houses the
target subcustomer. Contact your Account Representative for this value.

* sub-customerId: The ID associated with the subcustomer you want to view.

* network: You need to decide which network version of the subcustomer you want: production (live)
or staging (testing).

See the ACE API docs
Call formatting and other specifics are covered in the ACE APl documentation.

Remove a subcustomer

If you no longer need a subcustomer you've previously registered, you can use an API operation to remove
it.

This is accomplished by running the "Remove a subcustomer" operation via the ACE API. You'll need the
following values to run this operation:

Note: Take caution when removing a subcustomer from the production network. This
will affect any live access to that subcustomer.

* propertyId: Thisis the unique ID value associated with the base configuration that houses the
target subcustomer. Contact your Account Representative for this value.

* sub-customerId: The ID associated with the subcustomer you want to remove.

*+ network: You need to decide which network version of the subcustomer you want to remove:
production (live) or staging (testing).

Call formatting and specifics are covered in the APl documentation.

List all sub-properties for a base configuration

A sub-property (subPropertyID) is another name for a domain associated with a specific subcustomer.
You can use the API to request a list of all of the sub-properties for all subcustomers you've registered with a
base configuration.

This is accomplished by running the "List all sub-properties for a base configuration" operation via the
ACE API. You'll need the following values to run this operation:

* network: You need to decide which network version of the base configuration you want: production
(live) or staging (testing).

* propertylId: This is the unique ID value associated with the target base configuration. Contact your
Account Representative for this value.

Call formatting and specifics are covered in the APl documentation.

List all domains for a subcustomer

If you've already registered a subcustomer with a base configuration, you can call it to list all of the domains
(subPropertyID) associated with it.

This is accomplished by running the "List all subcustomer domains" operation via the ACE API. You'll
need the following values to run this operation:

* network: You need to decide which network version of the base configuration you want: production
(live) or staging (testing).

* propertyId: Thisis the unique ID value associated with the base configuration that houses the
target subcustomer. Contact your Account Representative for this value.

* sub-customerId: The ID associated with the subcustomer you want to target.

Call formatting and specifics are covered in the API documentation.

Create a delivery policy for each subcustomer

Each subcustomer you register for use with your base configuration must have its own delivery policy, to
define various settings specific to that subcustomer.

What is a delivery policy?

A delivery policy is a set of rules that consist of match criteria and behaviors that supplement those you've
set in the base configuration, but they only apply to the specific subcustomer named in the operation to
create the delivery policy.

A delivery policy is laid out in a request body component, and it should include at least the following:

An “origin” behavior. This requires that you include the subcustomer's hostname
(digitalProperty) as well as the origin hosthname (originDomain) where the subcustomer's
content is located. (If left out, what you've set for the Origin Server behavior in the base configuration
will serve as this subcustomer's origin.)

A time to live setting (TTL) for content: Some sites may require this.

A geographic restriction: Include this to prevent serving content into some countries. Some sites
may require this.

How do | create a Policy?

This is accomplished by running the "Create or update a policy" operation via the ACE API. You'll need the
following to complete this operation:

propertyId: This is included in the request syntax. This is the unique ID value associated with the
base configuration that houses the subcustomer for this delivery policy. Contact your Account
Representative for this value.

domainName: This is included in the request syntax. This is the hostname (domain) associated with
the subcustomer that's using this delivery policy.

network: This is included in the request syntax. You need to decide the network where the delivery
policy is applied: production (live) or staging (testing). We recommend that you use the staging
network, so you can test the delivery policy. You can later update the delivery policy to production to
"go live" with it.

A properly formatted request body: You also need to include a JSON-formatted document of rules
comprised of match criteria and behaviors to apply to requests for this subcustomer's content—If a
request adheres to the defined match criteria, the behaviors set in the delivery policy are applied. A
host of match criteria ("matches") and behaviors are available for use.

@ Note: You can disable or enable behaviors for all policies associated with the

applicable base configuration, using the Subcustomer Enablement behavior. For
example, if you set Token Authentication to "Off" in your base configuration,
subcustomers cannot configure this behavior in a delivery policy.

Instructions on the "create or update a policy"” operation

We offer some topics here in this guide that give you usage guidelines as well as some examples, and we
recommend that you review these topics:

Example request body for a policy on page 54

How to structure a rule on page 55

View a specific policy on page 69

Delete a policy on page 70

Review a policy's history on page 70

Map expansion and ACE API operations on page 70

A simple test of a policy on page 71

However, all call formatting specifics are covered in the ACE AP/ documentation.

Example request body for a policy
Each "create or update a policy" operation via the ACE API requires a properly formatted request body.

This example assumes you're creating a policy that does the following for a new subcustomer whose
hostname is www.example. com:

+ It defines an origin domain. The subcustomer origin hostname is
c1234567.cloudprovider.com. Also, we want to ensure that the incoming request Host header
is sent to the origin.

+ It sets a default caching policy. This is set to no-store, which presumes HTML pages and other
content not defined as cacheable elsewhere in the policy is dynamic in nature.

+ It applies a custom one day TTL for certain content. This is applied for all PNG, GIF and JPG
images in the /static/* directory.

» It applies another separate one hour TTL. This is applied for all CSS and JS files in the /
static/* directory

« It blocks clients in North Korea.

If so, the JSON you must include with this operation might look like the following:

"rules" : [
{
"matches" : [
{
"name" : "url-wildcard",
"Value" . u/*"
t
1,
"behaviors" : [
{
"name" : "origin",
llvalue" . "_Il,
"params"
{
"digitalProperty" : "www.example.com",
"originDomain" : "cl1l234567.cloudprovider.com",
"cacheKeyType" : "origin",
"hostHeaderType" : "digital property",
"hostHeaderValue" : "-",
"cacheKeyValue" W=
}
s
{
"name" : "caching",
"type" : "no-store",
"Value" : w_mn
s
{
"name" : "geo-blacklist",
"type" : "country",

"value" : "KP"

"name" "url-wildcard",
"value" "/static/*"
b
{
"name" "url-extension",
llvalue" "png gif jpg—"
}
1/
"behaviors" : [
{
"name" "caching",
Iltype" "fixed",
"value" "86400s"
1
]
}y
{
"matches" : [
{
"name" "url-wildcard",
"value" "/static/*"
b
{
"name" "url-extension",
"value" "css js"
}
1y
"behaviors" : [
{
"name" "caching",
"type" "fixed",
"value" "3600s"

"matches" : [

{

The response, if successful, will repeat the JSON structure representing the complete (unformatted) policy.

How to structure a rule

A policy takes the form of rules composed of matches and applicable behaviors. The match criteria
must be set first, followed by the desired behaviors to apply. You need to know how to properly format a rule.

Once the criteria set in a match is met, associated behaviors are applied to a request. You can nest matches
in an individual rule, and you can have multiple behaviors in a single rule. You can also include multiple rules
—match and behavior combinations—in a single policy.

The format for an individual rule in a policy follows a specific format:

"rules" : [
"matches" : [
{
<match criteria>
}
]
"behaviors" : [
{
<behaviors>

}

Example rule

This policy contains a single rule set, that denies access to all .jpg, .gif, and .png files requested from any IP
address other than 198.18.48.211.

"rules" : [
{
"matches" : [
{
"name" : "url-extension",
"value" : "jpg gif png"
}
1y
"behaviors" : [
{
"name" : "ip-whitelist",
"value"™ : "198.18.48.211"

You can negate match conditions

All matches can be negated (inverting from “must match” to “must not match”) by adding a "negated":
true attribute to the match condition.

The "negated": element is available with each match condition. It is optional, and its default setting is
false. So, you don't need to include “negated”: false in your matches.

For example, if you want to apply behaviors to all paths that are not in either /pathl/* or /path2/* then
you could use the following negated match condition:

"matches" : [

{
"name" : "url-path",
"value" : "pathl path2",

"negated" : true

Rule application and precedence

Rules are applied from the top down. The more precise the match criteria, the more important it is to ensure
that subsequent rules do not alter the behavior in unexpected ways. Therefore, the more specific the criteria,
the farther down in the list of rules it should be placed.

For example, let's assume you have a caching match/behavior combination that exists at the top of your
rules listing that does the following:

* Match criteria: It matches on a"/static/*" URL wildcard and on URL extensions (for example
‘ong gif jpg)

» Behavior: A caching TTL is set for this content of one day (14d).

If you were to add a separate caching match/behavior combination farther down in the JSON, that uses the
same “/static/*” URL wildcard pattern, and set a caching TTL of one hour (1h), then the first
combination would never be applied, because this second combination is a more generic set of match
conditions, and would take precedence.

Nest matches
One level of match nesting is supported. (You can include two match criteria in a single rule.)

Example of nesting match criteria
With this example code segment, if the URL begins with /pathl or /path2, and the request method is

GET, then the "behaviors™ : [] thatare setin the policy are applied.
"matches" : [
{
"name" : "url-path",
"value" : "pathl path2"
}y
{
"name" : "http-method",
"value" : "GET"
}
1,
"behaviors" : [{any behaviors you apply in the policy}]

Include multiple behaviors
Along with your match criteria, you need to include behaviors that should be applied to requests. You can
include multiple behaviors in a single delivery policy.

A behavior needs to be enabled for use in a delivery policy

A behavior's associated option in the Subcustomer Enablement behavior must be set to "On" in the base
configuration associated with the applicable subcustomer.

There is a maximum number of behaviors

Currently the system supports a maximum of 100 behaviors in a single delivery policy—either within a single
rule, or as the grand total for multiple rules. If the delivery policy exceeds this maximum, it is rejected upon
submission.

An example of multiple behaviors
This is a simple example in which multiple rules are defined in a single rule. With it, the following apply:

* If a GET request comes from the IP address, 198.18.48.211 for content in the directories, pathl
orpath2, itis denied access.

+ The content in the directories, pathl or path? is refreshed if it was cached by the Edge server
before the epoch time 1533081600 (Wed, 01 Aug 2018 00:00:00 GMT).

"matches" : [
{
"name" : "url-path",
"value" : "pathl path2"
b
{
"name" : "http-method",
"value" : "GET"
t
1y
"behaviors" : [
{
"name" : "ip-blacklist",
"value" : "198.18.48.211"
}y
{
"name" : "content-refresh",
"type " : "epoch" 0
"value" : "1533081600"

Supported matches and behaviors
Several match criteria ("matches") and behaviors are supported for use in a policy rule.

Matches

Click the "Name" entry for a match to access the ACE APl documentation to review requirements and
access a schema example.

Requirements Description

and schema

example

client-ip Include this to match using the IP address assigned to the requesting client. You
can specify individual IP addresses, or CIDR blocks (that express a range of
addresses).

cookie Include this match to define specific cookie names for use when matching on an
incoming request.

Requirements Description

and schema

example

geography Use this match to test the requesting client's location, either by continent, country,
region, or designated market area (DMA). Each subcustomer policy can include up
to ten geography matches.

header Associated behaviors are applied if a header or header value you specify in this
match criteria are included with a request.

host-name Include this to match on hostnames listed in the incoming request's Host header.

http-method

Include this to match on a set of HTTP methods.

url-extension

Include this to match on the extension in the incoming request. This match criteria
has no effect on URL paths that do not include a file extension.

url-filename

Include this to match on the extension in the incoming request. This match criteria
has no effect on URL paths that do not include a file extension.

url-path

Include this to match on the first path component in the incoming request. The first
path component is the section directly after the base URL.

url-querystring

Include this to match on the protocol or scheme (HTTP or HTTPS) of an incoming
request.

url-scheme

Include this to match on the protocol or scheme (HTTP or HTTPS) of an incoming
request.

url-wildcard

Include this to use wildcards when matching on the incoming request path, minus
any query strings. This match type only supports the * wildcard.

Behaviors

Click the "Name" entry for a behavior to access the ACE APl documentation to review requirements and
usage, and access a schema example.

Name

Description

access-control

Include this to deny client requests based on the selected match conditions.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Access Control set to
"On" in the Subcustomer Enablement behavior.

cachekey-query-args

Include this to specify how to handle query-string arguments in incoming
requests.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Cache Key Query
Arguments set to "On" in the Subcustomer Enablement
behavior.

caching

Include this to provide time-to-live (TTL) cache settings for subcustomers.

Name

Description

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Caching set to "On"
in the Subcustomer Enablement behavior.

content-char-dynamic-
web

If you're using Integrated Cloud Acceleration, this uses SureRoute to optimize
the forward path to the origin server. It controls embedded object prefetching,
and situational image compression.

@ Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Dynamic Web
Content set to "On" in the Subcustomer Enablement
behavior. (By default, this is set to "Off.")

content-char-large-file

Include this to optimize the delivery of large file downloads of up to 1.8 GB.
This behavior uses partial object caching with pre-fetched object data. As a
best practice, only use this behavior if you serve large files. Otherwise, the
Akamai platform may send additional requests to your origin. When using
Large File Optimization, if an object doesn't meet the minimum size criterion
of 10 MB, the platform requests the entire object from the origin.

@ Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Large File Delivery
set to "On" in the Subcustomer Enablement behavior. (By
default, this is set to "Off.")

content-characteristics-
on-demand-streaming

Include this to optimize cache and network timeout conditions for on-demand
video content. The Akamai platform examines the URI file extension and path
for the media format then automatically optimizes: cache efficiency, time-to-
live, automated failover, downstream Content-Type headers, and network
timeout settings.

@ Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Streaming Video On-
demand Delivery set to "On" in the Subcustomer
Enablement behavior. (By default, this is set to "Off.")

content-characteristics-
live-streaming

Include this to optimize caching and network timeout conditions for live video
content. The Akamai platform examines the URI file extension and path for
the media format. It then automatically optimizes cache efficiency, time-to-
live, automated failover, downstream Content-Type headers, and network
timeout settings.

@ Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Streaming Video Live
Delivery set to "On" in the Subcustomer Enablement
behavior. (By default, this is set to "Off.")

Name

Description

content-compression

Include this in your policy to provide compression settings. You can enable
gzip compression, decompress objects before delivering them to the client, or
maintain the origin's compression settings.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Content Compressor
set to "On" in the Subcustomer Enablement behavior.

content-refresh

Include this to invalidate CDN cache at an explicit date and time. This
behavior uses epoch time to denote when a request should receive a new
copy of the object or a revalidated one.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Content Refresh set
to "On" in the Subcustomer Enablement behavior.

downstream-caching

Include this to control downstream caching of alternate content. Only use this
behavior if site failover is enabled for the alternate hostname property. If you
do not include this behavior, the subcustomer policy uses the downstream
caching settings specified in the alternate hostname property. To enable site
failover, use the Subcustomer Enablement behavior in Property Manager.

geo-blacklist

nclude this to block access to content based on the continent, country, region/
state, or designated marketing area (DMA) of the requesting IP address. All
other geographic areas are allowed.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Geo Allow/Block set
to "On" in the Subcustomer Enablement behavior.

geo-whitelist

Include this to allow access to content based on the continent, country,
region/state, or designated marketing area (DMA) of the requesting IP
address. All other geographic areas are denied.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Geo Allow/Block set
to "On" in the Subcustomer Enablement behavior.

ip-blacklist

Include this to block access based on the requesting IP address. All specified
IP addresses are blocked.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have IP Allow/Block set to
"On" in the Subcustomer Enablement behavior.

ip-whitelist

Include this to allow access based on the requesting IP address. Only the IP
addresses listed are allowed access.

Name Description
Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have IP Allow/Block set to
"On" in the Subcustomer Enablement behavior.
modify-outgoing- Include this to modify the outgoing request headers sent from Akamai to an

request-header

origin. This also works on request headers sent from a client if the request is
sent back to the origin, but not a cache hit.

modify-outgoing- Include this to provide options for altering the request URL before it is sent to
request-path origin.

Note: To set this in a policy, the base configuration a

subcustomer is assigned to must have Modify Forward Path

set to "On" in the Subcustomer Enablement behavior.
modify-outgoing- Include this to modify the outgoing response headers sent from the Edge

response-header

server back to the client.

origin

Inlcude this to provide origin settings for the specific subcustomer. You need
to include the origin DNS hostname, forward host header, and cache key.
Optional settings include the origin base path and ports.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Origin set to "On" in
the Subcustomer Enablement behavior.

origin-characteristics

Include this if you have Integrated Cloud Acceleration (ICA), to select the type
of origin supporting your ACE implementation. Use the origin behavior to
configure origin settings for subcustomers at the policy level.

origin-failover

This feature identifies primary origin connection failures based on a type you
specify and marks that origin as “bad” after connections to all its IPs fail
repeatedly. Rather than issuing a redirect to the end user, requests are failed
over to a backup origin you call out. This improves response times, because
the end user doesn’t have to wait several seconds for a connect-timeout on
the forward request. Additionally, you specify a duration of time the primary
origin is marked as bad. During this time, all requests are failed over to your
backup origin. This relieves pressure on the primary by reducing the number
of connection attempts, at a time when it appears to be having difficulties.

referer-blacklist

Include this to block access based on the Referer request header. This
behavior helps verify that the client is a browser that supports RFC 2616,
section 14.36, and that the referring HTML page is served from a domain
trusted by the content owner.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Referrer Allow/Block
set to "On" in the Subcustomer Enablement behavior.

Name

Description

referer-whitelist

Include this to allow access based on the Referer request header. This
behavior helps verify that the client is a browser that supports RFC 2616,
section 14.36, and that the referring HTML page is served from a domain
trusted by the content owner.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Referrer Allow/Block
set to "On" in the Subcustomer Enablement behavior.

site-failover

Include this to define the alternate hostname and path to use when the Edge
server can't contact the origin server.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Site Failover set to
"On" in the Subcustomer Enablement behavior.

token-auth

Include this to use tokens to control access to content. You can choose to
transmit the token in a cookie, header, or query parameter.

Note: To set this in a policy, the base configuration a
subcustomer is assigned to must have Token Authentication
set to "On" in the Subcustomer Enablement behavior.

url-redirect

Include this behavior to configure redirect responses for specific client
requests, and stop them from contacting the origin.

Examples of match and behavior combinations
Here, you'll find examples of the use of rules in a policy to define matches that must be met, and the
behaviors that will be applied. Additionally, we offer examples of conflicting and overlapping behaviors.

One rule, two matches, one behavior

In this example, we show a working base configuration that incorporates a single rule that has been set up
with two match criteria that can be met to apply a single behavior. The following are set:

» Match Criteria: The URI extension must be “jpg,” “gjf,” or “png” and the request method must be

GET.

» Behavior: If the match criteria is met, an IP whitelist is applied, denying all IPs except 198.18.48.211
and 198.18.48.212 access to these objects using the GET method.

"rules"

"matches" : [

"name" : "url-extension",
"value" : "jpg gif png"

"name" : "http-method",

"Value" "GET"

}
1,

"behaviors" : [
{
"name" "ip-whitelist",
"value" "198.18.48.211 198.18.48.212"

Two rules, two matches, two behaviors

In this example we shows two rules, each with two match conditions, that when met will apply two behaviors.

In this first rule, the following apply:

+ Match Criteria: The URI extension must be “jpg,
GET.

gjf,” or “png” and the request method must be

+ Behaviors: Both an IP whitelist and a referrer blacklist are defined. Only requests from
198.18.48.211 and 198.18.48.212 are allowed, unless they also have a Referer header value

containing “abcd.com.”

"rules" : [
{
"matches" : [
{
"name" "url-extension",
"value" "jpg gif png"
b
{
"name" "http-method",
"Value " "GET "
}
1,
"behaviors" : [
{
"name" "ip-whitelist",
"value" "198.18.48.211 198.18.48.212"
o
{
"name" "referer-blacklist",
"value" "*abcd.com*"
1
]
b
{
"matches" : [
{
"name" "host—-name",
"value" "www.example.com"
b
{
"name" "http-method",

"Value" "GET"

}
1,

"behaviors" : [
{
"name" "ip-whitelist",
"value" "198.18.48.215 198.18.48.216"
s
{
"name" "referer-blacklist",
"value" "*www.abc.com*"

In the second rule, the following apply: matches all GET requests for the hostname “www.example.com” and
applies both an IP whitelist and a referrer blacklist; only requests from 198.18.48.215 and 198.18.48.216 are
allowed, unless they also have a Referer header value containing “www.abc.com.”

» Match criteria: All GET requests for the hostname, “www.example.com.”

+ Behaviors: Both an IP whitelist and a referrer blacklist are applied. Only requests from
198.18.48.215 and 198.18.48.216 are allowed, unless they also have a Referer header value

containing “www.abc.com.”

"rules"
{
"matches" : [
{
"name" "url-extension",
llvalue" "jpg gif png"
s
{
"name" "http-method",
"Value " "GET "
t
1,
"behaviors" : [
{
"name" "ip-whitelist",
"value" "198.18.48.211 198.18.48.212"
b
{
"name" "referer-blacklist",
"value" "*abcd.com*"
t
]
}y
{
"matches" : [
{
"name" "host-name",
"value" "www.example.com"

by
{

"name" : "http-method",

"value" : "GET"
}
1,
"behaviors" : [
{
"name" : "ip-whitelist",
"value" : "198.18.48.215 198.18.48.216"
b
{
"name" : "referer-blacklist",
"value" : "*www.abc.com*"

A conflict that results in an undefined behavior
In this example, we show how setting up conflicting behaviors can result in an "undefined behavior," and
offer a suggestion to avoid this.

In this incorrect rule, the following apply:

” W

» Match Criteria: The URI extension must be “jpg,
GET.

gjf,” or “png” and the request method must be

+ Behaviors: Both an IP whitelist, including a single IP, and an IP blacklist also including a single IP
are defined as behaviors. The IP whitelist takes precedence, and all IPs except 198.18.48.212 are
denied access to these objects. Since 198.18.48.214 is outside the white list, it is already denied. So,
the IP blacklist is unnecessary, making it an "undefined behavior."

"rules" : [
{
"matches" : [
{
"name" : "url-extension",
"value" : "jpg gif png"
}y
{
"name" : "http-method",
"value" : "GET"
}
1,
"behaviors" : [
{
"name" : "ip-whitelist",
"value" : "198.18.48.211 198.18.48.212"
b
{
"name" : "ip-blacklist",

"value™ : "198.18.48.213 198.18.48.214"

What to do to fix this

A more practical use case might be to implement the following: match on URI extension “jpg,” “gjf’ or “png,”
request method GET and apply a geographic restriction, but where an IP whitelist allows otherwise blocked
clients to access the content. The following example will deny all clients inside the United States, except IPs
198.18.48.211 and 198.18.48.212 have been explicitly granted access to these objects.

{

"rules" : [
{
"matches" : [
{
"name" : "url-extension",
"value" : "jpg gif png"
by
{
"name" : "http-method",
"value" : "GET"
t
1,
"behaviors" : [
{
"name" : "geo-blacklist",
"type" : "country",
"value" : "US"
by
{
"name" : "ip-whitelist",
"value" : "198.18.48.211 198.18.48.212"

Be careful with behaviors that overlap

Rule order is important because of the possibility of creating overlapping rules. Rule order is most important
when the behaviors overlap.

As the partner, you are responsible for managing rules to prevent unexpected behavior. Essentially, this
means that you need to do both of the following:

» Keep track of the match conditions within a given “rules” collection.

* Remember that, the more restrictive a set of match conditions is, the later it should appear in the
collection.

For example, if there is a generic match for a “jpg” file extension that defines a time to live (TTL) of seven
days, and another match that includes both a path of “/ images/*” and a file extension match for “jpg” that
defines a TTL of one day, the latter rule should exist after the first in the configuration. Putting the less
complex rule later in the list would override all previous matches and the related behaviors. In this example,
if the order were reversed the Akamai server would use a seven day TTL, regardless of whether or not the
“ipg” object was requested using the “/ images/*” path.

Below is an example of a properly-constructed rules collection for the above scenario:

"rules" : [
{
"matches" : [
{
"name" : "url-extension",
"Value" : "jpg"
}
1,
"behaviors" : [
{
"name" : "caching",
"type" : "fixed"
"string" : "74d"
}
]
}y
{
"matches" : [
{
"name" : "url-extension",
"value" : "Jjpg"
b
{
"name" : "url-wildcard",
"value" : "/images/*"
t
1/
"behaviors" : [
{
"name" : "caching",
"type" : "fixed",
"string™ : "1d"

@ Note: If there is no overlap in behavior, then the order is irrelevant.

Consider the case where the “/images/*” path and “jpg” file extension matches are used to define a TTL,
but another rule has a match for “jpg,” that applies a geographic blacklist behavior for, say, North Korea.
These two rules do not share behaviors. So, the less restrictive rule is safe to place later in the list.

Below is an example in which the rule order does not matter, because there is no overlap in behavior:

"rules" : [
{
"matches" : [
{
"name" : "url-extension",
"value" : "jpg"

}
1,

"behaviors" : [

{

"name" : "geo-blacklist",
"type" : "country",
"value" : "KP"
t
]
s
{
"matches" : [
{
"name" : "url-extension",
Ilvalue" : "jpg"
s
{
"name" : "url-wildcard",
"value" : "/images/*"
}
1,
"behaviors" : [
{
"name" : "caching",
"type" : "fixed'l
"string" : "1d"

As the partner, you also need to consider the case when multiple behaviors are applied with overlapping
matches. When this is the case, it is generally safe to put the most restrictive matches /last in the rules
collection, regardless of whether there are overlapping behaviors.

View a specific policy

You can GET a specific subcustomer's associated policy to view its rules and behaviors. This can help if you
need to validate policy settings or to prepare updates to an existing policy.

This is accomplished by running the "Get a policy" operation via the ACE API. You'll need the following
values to run this operation:

* propertyId: Thisis the unique ID value associated with the base configuration that houses the
subcustomers you want to list. Contact your Account Representative for this value.

* domainName: This is the digital property (domain) for the subcustomer associated with the target
policy.

* network: You need to decide which network version of the policy you want to view: production (live)
or staging (testing).

Call formatting and other specifics are covered in the ACE APl documentation.

Delete a policy
If you no longer need a specific policy file, you can delete it.

This is accomplished by running the "Delete a policy" operation via the ACE API. You'll need the following
values to run this operation:

* propertyId: Thisis the unique ID value associated with the base configuration that houses the
subcustomers you want to list. Contact your Account Representative for this value.

* domainName: This is the digital property (domain) associated with the subcustomer for the target
policy.

* network: You need to decide which network version of the policy you want to delete: production
(live) or staging (testing).

Note: Take caution when deleting a policy in the production network. Ensure that it is
not currently serving a live subcustomer.

Call formatting and other specifics are covered in the ACE APl documentation.

Review a policy's history

The API offers an operation that allows you to view change information for an existing policy.

This is accomplished by running the "Get policy history" operation via the ACE API. You need the following
values to run this operation:

* propertyId: Thisis the unique ID value associated with the base configuration that houses the
subcustomers you want to list. Contact your Account Representative for this value.

* domainName: This is hostname (domain) associated with the subcustomer for the target policy.

* network: You need to decide which network version of the policy you want to view change
information: production (live) or staging (testing).

Call formatting and other specifics are covered in the ACE APl documentation.

Map expansion and ACE API operations

We've enhanced the ACE API in support of our recent map expansion improvements.

What is Map Expansion?

Previously with ACE, the regional network maps used were limited to address safety concerns, to prevent
risk to the entire network. So, ACE wasn't operating as well as it could. To improve performance, we've
made large improvements that allowed us to expand to 100% of the regional maps in the Akamai network.

As a result, propagation of a new policy requires more time. Early testing has shown this has increased from
one minute to eight minutes. But, the overall performance and safety benefits definitely make up for this.

There's a propagation status for each policy

To accommodate the added propagation time that map expansion introduces, we've made changes to the
ACE API that allow you to check on your policies.

* You can check the status of a policy. The Get a Policy operation now includes the
activationStatus value in the response:

— ACTIVE. The policy has been applied and is active in the applicable network (staging vs.
production).

— PROPAGATING. The policy was just created or edited and is still being propagated to the
applicable network.

— ACTIVATION FAILED. Propagation of the policy failed. Check its configuration and resubmit
it.

* You can view the last active version of a policy. Use the Get latest active policy operation to view
the last ACTIVE status version of a policy. You can review all of the current settings applied for it, to
determine if an update is required. (And, skip the new propagation time delay if the update isn't
necessary.)

A simple test of a policy

When a request is made against a subcustomer hostname that has policy rules set up, the rules take effect
when the requested content is delivered to the end-user.

Let's assume your subcustomer's hostname is www.example. com, and an end-user request is issued for
the following URL:

http://www.example.com/us—content/uploads/2014/10/filel.png

You've setup a policy for www.example. com, that includes the following rules:

"rules" : [
{
"matches" : [
{
"name" : "url-wildcard",
"value" : "/us-content/*",
}
1y
"behaviors" : |
{
"name" : "geo-whitelist",
"type" : "country",
"value" : "US"
}
]
}
]
}
With "value™ : "US" included, requests from outside the ‘United States’ are denied. (A 403 response is

issued, and the content is not served.)

To test this, you could issue a request from a non US-based client. However, using standard command line
tools and adding the Akamai debug “Pragma” values can help identify the reason for the 403 response.
(Contact your Account Representative for information on debug "Pragma" values.)

Other recommended tasks

This includes some highly recommended tasks such as setting up test objects, activating log delivery and
alerts, scheduling reports, and other tasks.

These tasks deal with monitoring and maintaining applications. They are recommended, but you don't have
to complete them to implement your ACE property. We recommend you review these tasks and determine
which ones best suit your needs.

Important: Log delivery must be activated prior to delivering any content from the
Edge network, as logs cannot be collected retroactively. It takes 24-48 hours for the
log delivery to start from the time when you activate it.

You should activate log delivery

Edge network logs can help you troubleshoot content and configuration problems. You can receive Edge
server logs of all requests for your content in a standard log file format. These logs are aggregated from data
from all Edge servers, sorted by time, and can be delivered with specified frequency to a specific email
address, or sent to your FTP servers.

Log delivery is not enabled by default. If you need Edge network logs, you need to activate it in Akamai
Control Center.

1. Log in to Control Center using a User ID and Password that have been configured for access to
ACE.

2. Select Configure > Log Delivery.

w

. Locate the applicable Object ID (CP code) associated with your instance of ACE. (It is listed in the
Products column.)

. Click the Action (gear icon) drop-down and select Begin Log Delivery > New.
. From the Delivery tab, set all required options (marked with an asterisk).

. Click the Next button.

N~ o o

. Set contact information for the new log configuration and click Finish. Logs will be delivered based
on your defined settings.

@ Tip: Detailed information on the Log Delivery tool can be accessed via its
dedicated Online Help (the “?” button revealed in the Ul in Control Center).

NetStorage

If your Edge network services include having logs delivered via FTP to your NetStorage
account, specify the NetStorage FTP upload account in the Log Delivery settings. The
NetStorage account information is included in your service activation package. You can also
look it up in Control Center.

NetStorage

Caution: When you use NetStorage for log delivery, it is important to
manage the content. If you don’t remove excess log files, you may see
large overage charges as the files take up more and more space. You
can remove the log files after you download them, or you can set up
automatic purging rules through the NetStorage interface on Control
Center.

You can test log delivery

Edge network logs are delivered in standard log formats, such as W3C Extended log format. However, if you
are currently using your own server logs for reporting or data analysis, you should verify that Edge network
logs are fully compatible with your log processing application. Test the first log files you receive from the
Edge network through your regular log processing application or workflow, and adjust them if necessary.

You can schedule recurring reports

In addition to viewing online reports in Control Center, you can activate recurring reports that are
automatically sent to you.

1. Log in to Control Center using a User ID and Password that have been configured for access to
ACE.

N

. Select Configure > Alerts.
. Select Cloud Embed and click the Continue button.

. Click the All Configured Alerts link.

a b W

. From the Choose Alert Type interface, you can select from a host of HTTP Downloads-related
alerts-Click the Add link for the desired one.

. Input a desired Alert Name.
. Select the applicable CP Code(s) for which the alert should be issued.
. Scroll down and set alert parameters as necessary.

. Define Notification options to indicate who will receive the alert, and how it will be sent.

o © 0o N o

. Click the Save button.

You should create additional Administrator accounts

An administrator account for Control Center is provided to you in your account information after you initially
provision ACE. As an administrator, you can create additional accounts with this, or lesser levels of access.

Creating additional administrator-level accounts allows multiple people to log on and perform administrator-
level tasks.

1. Log in to Control Center using a User ID and Password that have been configured for access to
ACE.

2. Select Configure > Organization > Manage Users and Groups.

\@’

Tip: Click the “?” button in the upper right of the Ul for assistance with this tool.

Go live

The Akamai platform requires that the subcustomer resource be CNAMEd fo Akamai. So, we recommend
that each subcustomer use a test domain to validate end-to-end CDN functionality via Akamai.

Let's assume the goal is to enable www.example.com via Akamai.
1. Create a test hosthame—such as test-www.example.com

2. CNAME the test hostname to the same endpoint (that you provide as the cloud partner) for
www.example.com

3. Create a copy of the policy via the ACE API, so that it uses the same origin. If required, the policy
can override the Host : header sent to the origin to use the “fixed” value, www.example.com as
shown below:

Note: All other behaviors, such as time to live (TTL) settings should match what is set
for www.example . com policy that was copied.

"rules" : [
{
"matches" : [
{
"name" : "url-wildcard",
"Value" : u/*",
}
1,
"behaviors" : [
{
"name" : "origin",
Ilvalue" nw_mn
"params" : {
"digitalProperty" : "test-www.example.com",
"originDomain" : "cl1234567.cloudprovider.com",
"cacheKeyType" : "origin",
"cacheKeyValue" W=t
"hostHeaderType" : "fixed",
"hostHeaderValue" : "www.example.com",

In the short term, this means fully-qualified URLs in the resulting HTML are not updated to reflect the test
hostname, so browser-based testing will not suffice. Automated testing can be used to functionally test
delivery of content via the Akamai platform.

Add dynamic web content support for a subcustomer

To configure support for dynamic web content, you need to include the content-characteristics
behavior in the JSON body when creating or updating a subcustomer's delivery policy.

What is dynamic web content?

This describes web content (such as an individual web page) that displays different each time it's viewed.
For example, the content may change with the time of day, the user that accesses it, or the type of user
interaction.

Prerequisites for dynamic web content

Before you update or create a policy to support dynamic web content for a subcustomer, there are various
tasks you need to complete.

You need to enable Dynamic Web Content in your base configuration

Just like any instance of ACE, you need to create a base configuration to define feature and support
permissions for use with subcustomers. To support dynamic web content, you need to apply some specific
settings, using the Subcustomer Enablement behavior in the base configuration.

(D Note: Only the options required to enable support for dynamic web content are
discussed here. Other options can be enabled (or disabled) as necessary for your
base configuration.

Sub-Customer Enablement

Dynamic Policy

El
‘H‘-_ - i
e S

Dynamic Web Content

+ Dynamic Policy: This switch needs to be set to On. This allows interaction with policies for
subcustomers that have been registered with this base configuration. (This must be enabled to
modify or create a policy to support dynamic web content.)

+ Dynamic Web Content: This switch must be set to On to allow configuration of dynamic web
content support in a subcustomer policy.

You can add Integrated Cloud Acceleration

Integrated Cloud Acceleration (ICA) is a collection of features that you can use to add more support for
Dynamic Web Content for subcustomers.

* You need ICA added to your contract. Talk to your account representative about adding this to
your contract to use this support.

* You need "Dynamic Web Content" enabled. This option needs to be enabled in the Sub-
Customer Enablement behavior.

* You need to add the "Content Characteristics - Dynamic Web Content" behavior. With
Dynamic Web Content enabled, you can add this behavior to the same rule. In that rule, perform
the following:

1. Click the Add Behavior button.

2. In the Search available behaviors field, input "Content" and select the Content
Characteristics - Dynamic Web Content behavior from the list.

3. Click the Insert Behavior button.

4. Enable any of the options in the behavior to allow their use when configuring a subcustomer
policy via the ACE API. (Mouse-over each option for a detailed description.)

Content Characteristics - Dynamic Web Content

SureRoute
Prefetch Objects
Real User Monitoring

Image Compression

You need to register subcustomers

To offer a subcustomer access to this support, it must be registered with the base configuration that has the
appropriate Subcustomer Enablement behavior options applied.

+ This is a new subcustomer. This is no different than registering a subcustomer with any other ACE
base configuration—you use the "Add a new subcustomer" operation via the ACE API.

+ This subcustomer is already registered: You don't need to re-register an existing subcustomer to
apply this support.

1. Ensure that the base configuration that the subcustomer is associated with has the
appropriate Subcustomer Enablement options applied.

2. Update the existing delivery policy settings for that subcustomer to apply the settings covered
in this document.

Set up dynamic web content

You need to run the "Create or update a policy" operation via the ACE API, and set the type element value
to dynamic-web-content in the content-characteristics behavior.

Create or update a policy

General instructions on this operation can be found in the Akamai Cloud Embed API v2 documentation. See
Create or update a policy.

Define the appropriate match criteria in the delivery policy

Like all other rules in a delivery policy, you must set a match criteria (matches) that must be met to apply
the associated behaviors. In the example presented here, the url-wildcard match is used. This match
compares the incoming request path (excluding query string) to what is defined as the value for the match
"/*"is set here, which indicates all incoming request paths.

Include the "content-characteristics" behavior and set required members
To set up this support, you need to include the content-characteristics behavior, and the following
members must be included:

* type: This must be set to dynamic-web-content.

* wvalue: This must be included and always set to a hyphen (-).

Optional parameters

You have access to additional parameters ("params") with the content-characteristics behavior,
when configuring support for dynamic web content:

@ Note: To configure these parameters in a subcustomer's policy, that subcustomer must
be registered with a base configuration that has had the parameters enabled. They are
enabled via the Content Characteristics - Dynamic Web Content behavior. (This
behavior must be added to the base configuration, and the parameters must be set to
"On.") If the behavior is not added, or a parameter is set to "Off," they cannot be

included.
Name Type Description
sureRouteTest | String (optional) Include this to enable AkamaiSureRoute for the policy. The
ObjectPath associated value must be a valid URI path that points to an

object on your origin that meets the standard criteria for a
valid SureRoute Test Object. (It can't have auth, and it must
be compressible—between 4KB —12KB in size after
compression.)

Name Type Description

prefetchEnabl Boolean Include this and set the value to "Yes" to enable the

ed embedded object pre-fetching feature

mobileImageCo Boolean Include this and set the value to "Yes" to enable compression
mpressionEnab of JPEG images for requests over certain mobile network
led conditions.

What is SureRoute?

The Akamai SureRoute feature provides the optimal route between an Edge server and the origin server, at
any given point in time. If the sureRouteTestObjectPath parameter is left out of a subcustomer policy,
SureRoute is disabled.

What is Prefetching?

Prefetching positions objects at the Edge to ready them for requests, to reduce the overall time to deliver
these objects. This behavior relies on the "origin-assisted" prefetch model—it expects your origin to send
details on the objects that need to be prefetched, in its response. When prefetchEnabled is set to "true,"
Edge servers "prefetch" objects that have the following file extensions:

.aif .gcf .ppc
.aiff gff .pws
.au .gif .swa
.avi .grv .swf
.bin .hdml Axt
.bmp .hgx .vbs
.cab .ico w32
.carb .ini .wav
.cct Jjpeg .wbmp
.cdf Jpg wml
.Class Js .wmlc
.CSS .mov .wmls
.doc .mp3 .wmlsc
.dcr .nc .xsd
.dtd .pct .Zip
.exe .pdf

flv .png

What is Mobile Image Compression?

When mobileImageCompressionEnabled is set to "true," Akamai Edge servers increase the
compression of JPEG images (.jpg, .jpeg, .jpe, .jif, .jfif, and .jfi extensions), when slower network speeds are
detected for a requesting mobile client. Serving compressed images reduces the amount of data required to
load a page, which can compensate for suboptimal network performance. You don't need to change any
your HTML content when using or configuring mobile image compression.

When this compression is triggered, the Akamai network does the following:

1. The application segment metadata is stripped. This does not affect how the image is displayed or
decoded.

2. The JPEG Comment (COM) segment is preserved. This segment may contain copyright
information (which may need to be preserved).

JSON Examples
+ Example 1: This example shows how an endpoint is optimized for dynamic web content.

{
"rules": [
{
"matches": [
{
"name": "url-wildcard",
"Value": n/*u
}
1,
"behaviors": [
{
"name": "origin",
"value": "-",
"params": {
"cacheKeyValue": "-",
"digitalProperty":
"sitecustomer.partnerdomain.net",
"cacheKeyType": "origin",
"hostHeaderValue": "-",
"originDomain":
"dynamicwebcustomer.origin.mediaservices.partnerdomain.net",
"hostHeaderType": "origin"
bo
}y
{

"name": "content-characteristics",

"type": "dynamic-web-content",

Hvalue ” : nw_mn p

"params": {
"sureRouteTestObjectPath": "/akamai/akamai-

sureroute-test-object.htm",

"realUserMonitoring": true,
"prefetchEnabled": true,
"mobileImageCompressionEnabled": true

+ Example 2: In this example the endpoint is optimized for dynamic web content, but SureRoute is
disabled. (The sureRouteTestObjectPath member is left out.)

{

"rules": [

"matches": [
{
"name": "url-wildcard",
"value": "/*"
}
1,
"behaviors": [
{
"name": "origin",
"Value": "_",
"params": {
"cacheKeyValue": "-",
"digitalProperty":
"sitecustomer.partnerdomain.net",
"cacheKeyType": "origin",
"hostHeaderValue": "-",
"originDomain":
"dynamicwebcustomer.origin.mediaservices.partnerdomain.net",
"hostHeaderType": "origin"
by
}y
{

"name": "content-characteristics",
"type": "dynamic-web-content",
Ilvalue " : nw_mn ,
"params": {
"realUserMonitoring": true,
"prefetchEnabled": true,
"mobileImageCompressionEnabled": true

Add live video support for a subcustomer

Live video delivery support for ACE offers several optimizations for live content delivery for subcustomers.

You don't need to enable it in your base configuration

Live video support is enabled here by default. You don't need to update your base configuration to enable it
or to apply any additional settings.

But, you need to enable it in a subcustomer's policy

You need to run the "Create or update a policy" operation via the ACE API, and set the type element value
to streaming-video-1live in the content-characteristics behaviorin a subcustomer's policy.

Set up live video in a policy

Here, we cover the specifics required to update a subcustomer policy to add support for live video.

Create or update a policy

General instructions on this operation can be found in the Akamai Cloud Embed API v2 documentation. See
Create or update a policy.

Define the appropriate match criteria in the delivery policy

Like all other rules in a delivery policy, you must set a match criteria (matches) that must be met to apply
the associated behaviors. In the example presented here, the url-wildcard match is used. This match
compares the incoming request path (excluding query string) to what is defined as the value for the match
"/*"is set here, which indicates all incoming request paths.

Include the "content-characteristics"” behavior in the policy

To set up this support, you need to include the content-characteristics behavior, and the following
members must be included:

* type: This must be setto streaming-video-1live.
* wvalue: This must be included and always be set to a hyphen (-).

With just these members set, live video is enabled for the subcustomer, using default settings. Additional
specifics on the use of this behavior in a policy can be found in The "content-characteristics-live-streaming”
behavior on page 149.

You can set optional parameters

You have access to additional parameters ("params") with the content-characteristics behavior,
when configuring support for live streaming video. They allow you to define specific settings for this
subcustomer.

If you apply a segmentDuration<media format> parameter, what you set overrides the Akamai default
duration values for this specific subcustomer.

Name Type Description
segmentDurati Number This is the duration, in seconds for HLS media segments.
onHLS The supported range is 0.1 to 10.0. See Apple Technical
Note 2224 for their recommended best practices.
segmentDurati Number This is the duration in seconds for HDS media segments. The
onHDS supported range is 0.1 to 10.0.
segmentDurati Number This is the duration in seconds for DASH media segments.
onDASH The supported range is 0.1 to 10.0.
segmentDurati Number This is the duration in seconds for Smooth media segments.
onSmooth The supported range is 0.1 to 10.0.
overrideDefau Boolean By default, Akamai sets the time to live (TTL) for the manifest
ltManifestTTL file based on the segment size specified for that format.
However, you can also set a TTL using the Caching behavior
in your base configuration. You can include this parameter to
specifically define which TTL to use.
* true: The TTL set in the Caching behavior is used.
+ false: Akamai defines the TTL based on the
segment size.
prefetch Object Use this object to enable and configure origin-assisted

segment prefetching for live video for this subcustomer.

O~ +—c o -0 Q

OO0 wnw o

(e}

O 0 wnw o

N OO »mwo: o

O 0O wnw o

O »w —o —h

n —o —

Name

Type

Description

Complete details and requirements are covered in Add

~—c o0 Qg

* D

prefetching support for video on page 91.

Note: HDS format video is currently not
supported for use with prefetching.

* Individual members are included in this object to define the segment prefetch method to use. Each
member is boolean and defaults to “false.”

The Akamai platform identifies the media format by examining the URI file extension or the structure of the
URI path, and automatically optimizes various settings relating to cache efficiency, cache time-to-live,
automated failover/retry, downstream “Content-Type” headers, and network timeout conditions for on-
demand video content.

JSON Examples

+ Example 1: This example omits all of the optional parameters. (The params object is included, but
left empty.) Default segment/fragment durations for all supported media formats will be used.

{

"rules": [
{
"matches": [
{
"name": "url-wildcard",
"Value": vv/*n
}
1,
"behaviors": [
{
"name": "content-characteristics",
"type": "streaming-video-live",
Ilvalue" : mw_mn ,
"params": {}

+ Example 2: This example shows how to include live video streaming. It also shows how to set
custom segment/fragment durations for a subcustomer, and also enable prefetching.

{

"rules": [

{

"matches": [

"name": "url-wildcard",

"Value" 5 vv/*"
}
1,
"behaviors": [
{
"name": "content-characteristics",
"type": "streaming-video-live",
Ilvalue" : nw_mn ,
"params": {

"segmentDurationHLS": 6,
"segmentDurationHDS": 5.5,
"segmentDurationDASH": 2.5,
"segmentDurationSmooth": 2.5,
"overrideDefaultManifestTTL": true,
"prefetch": {

"originAssist": true

}

Add on demand video support for a subcustomer

To configure subcustomer support for streaming on demand video, you need to start by configuring a
specific behavior in your base configuration. Then, you need to use the ACE API to configure the content-
characteristics behavior in the JSON request body when creating or updating a subcustomer's policy.

Enable on demand video in your base config.

To start, two specific options must be enabled in your ACE base configuration, and you need to perform
some additional tasks.

Apply settings in the Subcustomer Enablement behavior

Just like any instance of ACE, you need a base configuration to define feature and support permissions for
all subcustomers. To support on demand streaming video, enable these option in the Subcustomer
Enablement behavior.

Sub-Customer Enablement H0X

Dynamic Policy n |

T

s

Streaming Video On- “ !

demand Delivery

@ Note: Only the options required to enable on demand streaming video support are
discussed here. Other options in the Subcustomer Enablement behavior can be
enabled (or disabled) as necessary for your base configuration. See Set up a base
configuration on page 11 for complete details.

+ Dynamic Policy: This switch needs to be set to On. This allows interaction with policies for
subcustomers that have been registered with this base configuration. (This must be enabled to
modify or create a delivery policy to support streaming video.)

+ Streaming Video On-demand Delivery: This switch must be set to "On" to allow configuration of on
demand streaming video in a subcustomer delivery policy. (This is "On" by default.)

Cloud Embed User Guide © 2022 Akamai Technologies 86

There are other optional settings

You can add a separate behavior to configure various optimizations for on demand video delivery. These
settings are applied by default to all subcustomers that are registered with this base configuration. (You can
override these settings on a per-subcustomer basis, by applying the appropriate settings in a delivery policy
via the ACE API.)

+ Add the "Content Characteristics - Streaming Video On-demand” behavior. You need to add
this behavior to the same rule that contains the Subcustomer Enablement behavior:

1. Click Add Behavior.

2. In the Search available behaviors field, input "Content" and select the Content
Characteristics - Streaming Video On-demand behavior from the list.

3. Click Insert Behavior.

4. Set the options in the behavior to define various optimizations for streaming on-demand video
delivery. (Mouse-over each option for a detailed description.)

@ Note: Consider the following when setting options here:

» If you want to offer support for a specific media format (HLS, HDS, DASH, or
Smooth) for your subcustomers, its Enable <Media format> slider must be set
to "Yes." These all default to "Yes." So, if you left this behavior out of your base
configuration, all of these formats default to enabled.

+ If you're unsure of what to set for a specific option, leave it set to "Unknown."

Content Characteristics - Streaming Video On-demand

Catalog Size Unknown W

Content Type High Definition b

Popularity Distribution Unknown W

Enable HLS
HLS Segment Duration 105 v
HLS Origin Object Size 1-10MB b
— = e I |

—

You need to register subcustomers

To offer a subcustomer access to this support, it must be registered with the base configuration that has the
appropriate Subcustomer Enablement behavior options applied.

+ This is a new subcustomer. This is no different than registering a subcustomer with any other ACE
base configuration—you use the "Add a new subcustomer" operation via the ACE API.

+ This subcustomer is already registered: You don't need to re-register an existing subcustomer to
apply this support.

1. Ensure that the base configuration that the subcustomer is associated with has the
appropriate Subcustomer Enablement options applied.

2. Update the existing delivery policy settings for that subcustomer to apply the settings covered
in this document.

Set up on demand video

You need to run the "Create or update a policy" operation via the ACE API, and set the type element value
to streaming-video-on-demand in the content-characteristics behavior in a subcustomer's
delivery policy.

Create or update a policy

General instructions on this operation can be found in the Akamai Cloud Embed API v2 documentation. See
Create or update a policy.

Define the appropriate match criteria in the delivery policy

Like all other rules in a delivery policy, you must set a match criteria (matches) that must be met to apply
the associated behaviors. In the example presented here, the url-wildcard match is used. This match
compares the incoming request path (excluding query string) to what is defined as the value for the match
"/*"is set here, which indicates all incoming request paths.

Include the "content-characteristics"” behavior in the delivery policy

To set up this support, you need to include the content-characteristics behavior, and the following
members must be included:

* type: This must be setto streaming-video-on-demand.
* wvalue: This must be included and always be set to a hyphen (-).
With just these members set, on demand video is enabled for the subcustomer, using default settings.

You can set optional parameters

You have access to additional parameters ("params") with the content-characteristics behavior,
when configuring support for on demand streaming video. Each allows you to define the segment duration
for various supported media formats:

@ Note: To configure these parameters in a subcustomer's delivery policy, that
subcustomer must be registered with a base configuration that has had the
parameters enabled. They are enabled via the Content Characteristics - Streaming
Video On-demand behavior. (This behavior must be added to the base configuration,
and the parameters must be set to "On.") If the behavior is not added, or a parameter
is set to "Off," they cannot be included.

Name Type Description *

segmentDurati Float (optional) This is the duration, in seconds for HLS media segments.

onHLS The supported range is 0.1 to 10.0. The Akamai default value
is 10.0 seconds. See Apple Technical Note 2224 for their
recommended best practices.

segmentDurati Float (optional) This is the duration in seconds for HDS media segments. The

onHDS supported range is 0.1 to 10.0. The Akamai default value is
6.0 seconds.

segmentDurati Float (optional) This is the duration in seconds for DASH media segments.

onDASH The supported range is 0.1 to 10.0. The Akamai default value
is 6.0 seconds.

segmentDurati Float (optional) This is the duration in seconds for Smooth media segments.

onSmooth The supported range is 0.1 to 10.0. The Akamai default value
is 2.0 seconds.

prefetch Object Use this object to enable and configure origin-assisted
segment prefetching for on demand video for this
subcustomer. This is disabled (set to "false") by default.
Complete details and requirements are covered in Add
prefetching support for video on page 91.

Note: HDS format video is currently not
supported for use with prefetching.

* The default durations here only apply if you did not apply a custom value via the Content Characteristics -
Streaming Video On Demand behavior in the associated base configuration.

The Akamai platform identifies the media format by examining the URI file extension or the structure of the
URI path, and automatically optimizes various settings relating to cache efficiency, cache time-to-live,
automated failover/retry, downstream “Content-Type” headers, and network timeout conditions for on-

demand video content.

JSON Examples

+ Example 1: This example shows how an endpoint is optimized for on demand video streaming.

{

"rules":

{

[

"matches": [

{
"name" :
"value":

"url-wildcard",

n/*u

iy

"behaviors": [
{
"name": "origin",
"value": "-",
"params": {
"cacheKeyValue": "-",
"digitalProperty":
"videocustomer.partnerdomain.net",
"cacheKeyType": "origin",
"hostHeaderValue": "-",
"originDomain":
"videocustomer.origin.mediaservices.partnerdomain.net",
"hostHeaderType": "origin"
b
}y
{
"name": "content-characteristics",
"type": "streaming-video-on-demand",
Hvalue AL : nw_mn p
"params": {
"segmentDurationHLS": 10,
"segmentDurationHDS": 5.5,
"segmentDurationDASH": 3,
"segmentDurationSmooth": 4.5,
"prefetch": {
"originAssist": true

}

Example 2: You can also omit some or all of the segment duration params, as well as the additional
parameters. If you do, the applicable default duration setting is applied for each media format:

— lincluded the Content Characteristics - Streaming Video On Demand behavior in my
base configuration. If you've set a different value for segment duration for a specific media
format, that value is used.

— ldidn't include the Content Characteristics - Streaming Video On Demand behavior in
my base configuration. The default durations discussed in the table above are applied for
each media format.

The snippet below shows the content-characteristics behavior with an empty params object
to use default durations.

"name": "content-characteristics",
"type": "streaming-video-on-demand",
Hvalue". nw_mn

"params": {}

Add prefetching support for video

Prefetching positions target media content at the Edge in anticipation of requests by end users. This reduces
the time to deliver that content.

Prefetching extracts data from the current request or response and determines the next object that should
be requested. (For example, when a specific segment in a media clip is requested by a player, you can
prefetch the next segment to the Edge to expedite its delivery.)

A high level flow of Prefetching

1.

2.

The media player makes a request for {object-1}.

Akamai handles the request by forwarding it to your origin.

. You origin returns the requested object—{ object-1}—back to Akamai.

» The origin response also includes headers to prefetch {object-2}. The value of this header
is either an absolute URL path, or a relative URL path (relative to {object-1}).

. Akamai returns {object-1} to player and this completes the request/response flow for

{object-1}.

. Since the response from your origin also included prefetch response headers for {object-21},

Akamai triggers prefetching.

» Akamai creates an HTTP/S request for {object-2} and forwards it to your origin. This is
called a "prefetch request." Akamai includes a preconfigured request header in it, that tells
your origin that it's a prefetch request.

. Your origin returns {object-2} to Akamai.

» The origin response could include a response header to prefetch {object-3} to continue
the prefetching process.

. Akamai caches {object-2}.

* Akamai doesn't trigger prefetching for {object-3}. This is because {object-2} was
already prefetched from your origin (and you don't want a never-ending recursive prefetch
cycle).

. The player makes a request for {object-2}.

. Akamai fetches {object-2} from it's cache and returns it in the response to the player.

+ If the origin response for {object-2} included prefetch response headers for {object-3},
Akamai triggers prefetching of {object-3}, and the process can continue.

What media formats are supported?

Streaming Formats

* Apple HTTP Live Streaming (HLS)

* Dynamic Adaptive Streaming over HTTP
(DASH)

* Microsoft Smooth Streaming (MSS)

Live or Video on Demand (VoD) Both

Add prefetching for a subcustomer

You add this support to a subcustomer's policy via the ACE API v2. It's incorporated within the content-
characteristics behavior for either the streaming-video-on-demand or streaming-video-live

types:

"rules": [
{
"matches": [
{
"name": "url-wildcard",
"value": "/*vv
}
1,
"behaviors": [
{
"name": "content-characteristics",
"type": "streaming-video-live",
"Value" . nw_mn
. ’
"params": {

"prefetch": ({
"originAssist": true

}

See the following pages for complete details on how to incorporate the content-characteristics
behavior, for your selected delivery method:

+ Live: Set up live video in a policy on page 82

* On demand: Set up on demand video on page 88

What can be prefetched

An adaptive bit rate stream, such as HLS and DASH consists of multiple object types that are requested by
a player in a specific order. You can use this behavior to prefetch these objects to speed up delivery to end

users.

What's the typical flow for an HLS stream?

The table that follows discusses the object types you can usually find in an HLS stream, and the order

they're presented in a request.

Object

What is triggered next in a
Prefetch

Additional details

Master Playlist (.m3u8)

One or more variant Playlists
(.m3u8).

N/A

Variant Playlist (.m3u8)

One or more segments
belonging to the current variant
playlist. The segment to prefetch
depends on the play position of
the player, and this can be
difficult to determine for a VoD
stream. For Live streams, this is
typically one of the last three
segments in the variant playlist.

For the typical HLS stream,
segments have the following
extensions:

» .ts for video, video +
audio

e .aac, .ac3, .ec3 for
audio-only

« .vit, .webvtt, .mp4, etc.
for subtitles

For the newer HLS streams with
CMAF segments, the extensions
are:

* .mp4, .m4vy, etc. for video

* .mp4, .m4a, etc. for
audio

« .vit, .webvtt, .mp4 for
subtitles

These are not definitive,
complete lists. There are a lot of
supported extensions, and
some are non-standard. This is
to support various one-off
workflows you may have in
place.

Variant Playlist (.m3u8)

Zero or one "init" segment
(described via the #EXT-X-MAP
tag), that belongs to the current
variant playlist.

The init segments are present
almost exclusively for CMAF
segments, and the typical
extensions are:

Object What is triggered next in a Additional details
Prefetch
« .mp4
+ .mév
+ .mda
Segment The segment that follows nextin | N/A

the video/audio/subtitle
presentation time.

What's the typical flow for a DASH stream?

The table that follows discusses the object types you can usually find in a DASH stream, and the order

they're presented in a request.

Object

What is triggered next in a
Prefetch

Additional details

Manifest File (.mpd)

init segments for audio and
video followed by actual audio
and video segments. There are
no bit rate specific playlists and
content is always demuxed. So,
right after fetching the MPD file,
the player typically requests two
segments: one for video and
another for audio.

N/A

Init segment

One or more content segments.

N/A

Segment

The segment that follows next in
the video/audio/subtitle
presentation time.

N/A

Use the origin-assist scheme

With this prefetching scheme, when Akamai fetches an object from an origin, the response includes a new
header that lists the next object in the sequence. Akamai can read this information and prefetch this object.

Basically, Akamai relies on assistance from your "intelligent" origin to trigger prefetching.

What Origin Type can | use?

When defining your origin server for your base configuration, only certain origin types can be used with

prefetching.

When setting up your base configuration in Property Manager, you need to set the Origin Type in the Origin
Server behavior to either of the following:

Origin Server

* Your Origin: To use your own custom origin.
+ Media Services Live: If you're using Media Services Live as your origin.

Note: Currently, you can't use NetStorage as your origin if you want to use
prefetching.

How an origin triggers prefetching

Akamai sends specific information to your origin to initiate prefetching. Your origin must include a properly
formatted response header after this request, to trigger prefetching.

Phase 1: Akamai tells your origin Prefetching is enabled

Akamai handles a player request for content and sends a prefetch request header to your origin, telling it
that Prefetching is enabled:

CDN-Origin-Assist-Prefetch-Enabled: 1

Phase 2: Your origin responds to Akamai with what to prefetch

Your origin needs to use the Akamai request header to trigger prefetching. Your origin must send a prefetch
response header that tells Akamai what should be prefetched. This response header must be comprised of
the absolute or relative path to the object to be prefetched, followed by the Content-Length header
stating the length of the complete prefetch response header.

CDN-Origin-Assist-Prefetch-Path: <absolute|relative path of prefetch-able
object's URL>
Content-Length: x

Akamai creates the full URL for the object to be prefetched by using:

» The player-requested URL of the current object, and

» The relative or absolute path listed in the prefetch response header.
Absolute path examples

Specify an absolute path by prefacing it with forward slash. This tells Akamai to use the exact path specified.

URL of player that initiated
the request

Value of the response header
from the origin (used to
trigger prefetch)

URL of a request prefetched
from Akamai

https://property-
hostname/some/1234/
video-100k/pl.m3u8

/hls/live/1234/
video-100k/segl.ts

https://property-
hostname-from-player-
request/hls/live/1234/
video-100k/segl.ts

https://property-
hostname/thing/1234/
video-100k/segl.ts

/hls/live/1234/
video-100k/seg2.ts

https://property-
hostname-from-player-
request/hls/live/1234/
video-100k/seg2.ts

@ Note: In these examples, both property-hostname and property-hostname-
from-player are the HTTP/1.1 "Host" header as seen by Akamai.

Relative path examples

Specify a relative path by leaving out the forward slash from the beginning of the path. Akamai uses the
forward path of the current request, minus the filename as the base path when creating the prefetch URL

path.

URL of player that initiated
the request

Value of the response header
from the origin (used to
trigger prefetch)

URL of a request prefetched
from Akamai

https://property-
hostname/some/1234/
video-100k/pl.m3u8

video-100k/segl.ts

https://property-
hostname/some/1234/
video-100k/segl.ts

https://property-
hostname/thing/1234/
video-100k/segl.ts

seg2.ts

https://property-
hostname/some/1234/
video-100k/seg2.ts

Note: In these examples, property-hostname is the HTTP/1.1 "Host" header as

seen by Akamai.

Example 1: Include a single "prefetchable” path per response header

The origin uses individual instances of the prefetch response header to include a single object to be

prefetched.

CDN-Origin-Assist-Prefetch-Path: /hls/live-streaming/fifa/france-croatia/

video-1000k/pl.m3u8
Content-Length: x

If multiple objects are to be prefetched, then one response header per prefetchable URL can be returned by

origin. Ensure that all response headers use the same name. The order of these headers determines the
order Akamai follows to request each object.

CDN-Origin-Assist-Prefetch-Path: /hls/live-streaming/fifa/france-croatia/

video-1000k/pl.m3u8

CDN-Origin-Assist-Prefetch-Path: /hls/live-streaming/fifa/france-croatia/
audio/pl.m3u8
Content-Length: x

Note: Middle layer proxies may not preserve this ordering of response headers, and
content may not be delivered in the desired order.

Example 2: Include multiple "prefetchable” paths in a single response header

The origin uses a single instance of the prefetch response header to include a comma-separated list of
multiple objects to be prefetched.

CDN-Origin-Assist-Prefetch-Path: /hls/live-streaming/fifa/france-croatia/
video-1000k/pl.m3u8, /hls/live-streaming/fifa/france-croatia/audio/pl.m3u8
Content-Length: x

The order of the paths listed determines what is prefetched first. (Since this is only a single response
header, the issue with middle layer proxies doesn't apply.)

Phase 3: Akamai requests the prefetched object for the player

With a "prefetch object" determined by the response header from your origin, Akamai requests it, as if it was
requested by the player. To allow your origin to differentiate a prefetch request from a regular request all
prefetch requests from Akamai use the same request header:

CDN-Origin-Assist-Prefetch-Request: 1

Once Akamai receives the prefetch object, it caches it until the player requires it.

Along with sending the prefetch object to Akamai, you can also have your origin send a new response
header to prefetch the next object in the queue, if applicable.

Add large file delivery support for a subcustomer

To configure support for large file delivery, you need to include the content-characteristics behavior
in the JSON body when creating or updating a subcustomer's delivery policy.

What constitutes a large file?

A large file is anything in excess of 10 MB, up to a maximum of 1.8 GB in size.

Prerequisites

Before you update or create a delivery policy to support large file delivery for a Subcustomer, there are
various tasks you need to complete.

You need to enable Large File Delivery in your base configuration

Just like any instance of ACE, you need to create a base configuration to define feature and support
permissions for subcustomers. To support large file delivery, you need to apply some specific settings, using
the Subcustomer Enablement behavior in the base configuration.

(D Note: Only the options required to enable large file delivery are discussed here. Other
options can be enabled (or disabled) as necessary for your base configuration.

Sub-Customer Enablement

Dynamic Policy n |
Large File Delivery ﬂ !

* Dynamic Policy: This switch needs to be set to On. This allows interaction with policies for
subcustomers that have been registered with this base configuration. (This must be enabled to
modify or create a delivery policy to support large file delivery.)

+ Large File Delivery: This switch must be set to On to allow configuration of large file delivery in a
subcustomer delivery policy.

Cloud Embed User Guide © 2022 Akamai Technologies 98

You can add other Large File optimizations

You can add a separate behavior that allows you to set various optimizations for use in large file delivery.
These settings will be applied to all subcustomers that are registered with this base configuration. (You can
override these settings on a per-subcustomer, by applying the appropriate "params" in a delivery policy via
the ACE API.)

+ Add the "Content Characteristics - Large File" behavior. Make sure that Large File Delivery is
enabled in the Subcustomer Enablement behavior, and add this behavior to the same rule:

1. Click the Add Behavior button.

2. In the Search available behaviors field, input "Content" and select the Content
Characteristics - Large File behavior from the list.

3. Click the Insert Behavior button.

4. Set the options in the behavior to define various optimizations for large file delivery. (Mouse-
over each option for a detailed description.)

@ Note: If you're unsure of what to set for a specific option, leave it set to "Unknown."

Content Characteristics - Large File

Crigin Object Size Greater than 100 MEB v
Popularity Distribution Unknown W
Catalog Size Unknown W

Content Type Unknown b

You need to register subcustomers

To offer a subcustomer access to this support, it must be registered with the base configuration that has the
appropriate Subcustomer Enablement behavior options applied.

» This is a new subcustomer. This is no different than registering a subcustomer with any other ACE
base configuration—you use the "Add a new subcustomer” operation via the ACE API.

+ This subcustomer is already registered: You don't need to re-register an existing subcustomer to
apply this support.

1. Ensure that the base configuration that the subcustomer is associated with has the
appropriate Subcustomer Enablement options applied.

2. Update the existing delivery policy settings for that subcustomer to apply the settings covered
in this document.

Support for large file delivery

You need to run the "Create or update a policy" operation via the ACE API, and set the type element value
to large-files inthe content-characteristics behavior.

Create or update a policy

General instructions on this operation can be found in the Akamai Cloud Embed API v2 documentation. See
Create or update a policy.

Define the appropriate match criteria in the delivery policy

Like all other rules in a delivery policy, you must set a match criteria (matches) that must be met to apply
the associated behaviors. In the example presented here, the url-wildcard match is used. This match
compares the incoming request path (excluding query string) to what is defined as the value for the match
"/*" is set here, which indicates all incoming request paths.

Include the "content-characteristics” behavior and set required members

To set up this support, you need to include the content-characteristics behavior, and the following
members must be included:

* type: This must be setto large-files.
* value: This must be included and always set to a hyphen (-).

Optional parameters

A single parameter ("params") is available for this use case.

Name Type Description

objectSize String (optional) Apply any of the following values:

* 1tlmb: Specifiy this for files less than 1 MB in size.
(This is not considered a "large file" use case.)

* IlmbtolOmb: Specify this for files from 1 MB to 10 MB
in size. (This is not considered a "large file" use case.)

*+ 10mbtol00mb: (Default) Specify this for files from 10
MB to 100 MB in size. (This is considered a "large file"
use case.)

* gtl100mb: Specify this for files that are 100 MB in size
and larger. (This is considered a "large file" use case.)

@ Note: If you have added the Content Characteristics - Large File behavior to
thesubcustomer's base configuration, and set an Origin Object Size, what you set via
the objectSize parameter in a policy will override that setting for this specific
subcustomer.

You should know subcustomer file size requirements

The params settings, 10mbto100mb and gt100mb are considered "large file" settings. The other settings
represent much smaller object sizes, and they actually prevent serving large objects, because the “partial
object caching” (POC) feature is disabled with these cases.

POC increases origin server offload by caching in chunks, instead of as a single, composite object. POC is
required for the delivery of "large files"—those in excess of 10 MB in size. (It is automatically enabled if you
set 10mbto100mb or gt100mb in a policy.) If you set too small a file size, POC will not be enabled for these
larger files, and 403 errors will be returned for requests.

Also, if you specify a "large file" setting, but your origin never actually serves files in that size range, the
Akamai platform makes additional requests to the origin. (This can impact overall performance and access.)
This happens because the Edge server requests the first byte of each object to determine if the minimum
object size criteria (at least 10MB) has been met. Once that check fails, the server simply re-requests the
entire object from the origin.

We recommend that you verify the size of your delivery objects on your subcustomer's origin, and select the
appropriate size to ensure that POC is enabled or disabled, as necessary.

JSON Examples

+ Example 1: This example shows how an endpoint is optimized for large files.

{

"rules": [
{
"matches": [
{
"name": "url-wildcard",
"value": u/*n
}
1,
"behaviors": [
{
"name": "origin",
Hvalue": Il_",
"params": {
"cacheKeyValue": "-",
"digitalProperty":
"downloadcustomer.partnerdomain.net",
"cacheKeyType": "origin",
"hostHeaderValue": "-",
"originDomain":
"downloadcustomer.origin.mediaservices.partnerdomain.net",
"hostHeaderType": "origin"
by
}o
{

"name": "content-characteristics",
"type": "large-files",
"value AL : nw_mn
"params": {
"objectSize": "gtlOOmb",
}

Example 2: The snippet below shows the content-characteristics behavior with an empty
params object. In this case, the 10mbto100mb is automatically used as the default. (Objects will be
fetched in byte-range specific chunks, using the 10 MB to 100 MB size setting.)

{

"name": "content-characteristics",
"type": "large-files",
"Value"' w_m

. 4

"params": {}

Upgrade a request from HTTP to HTTPS

Add the HTTP to HTTPS Upgrade behavior to your property if you want to convert HTTP (non-secure)
requests from your clients to use secure HTTPS between the Akamai edge and your origin server.

PS Upgrade

rlor to upgrade an HTTP request received at the edge to HTTPS for the remainder of th
1avior, you need to properly set up "Origin SSL Certificate Verification’ in the "Origin S«
y. You also need to ensure that your origin supports HTTPS.

A complete request flow involves three total entities:
* The client making the request

+ The Akamai Edge server, where your property is read, and target content may be cached

» The origin where the target content is actually hosted

With this behavior added, all requests in the flow between the Akamai edge and your origin are converted to
HTTPS to secure them. Since TCP is stateful, an HTTP request from a client must be answered with an
HTTP response. If you require a complete HTTPS connection end-to-end, consider implementing a redirect
from the original HTTP URL to an HTTPS one.

How do | get access to HTTP to HTTPS Upgrade?

You need to have this added to your contract to access the appropriate behavior in Property Manager.
Contact your Account Representative to add this functionality.

Add HTTP to HTTPS Upgrade

Once you have it added to your contract, you can add this behavior to your ACE property by performing the
following:

Cloud Embed User Guide © 2022 Akamai Technologies 103

1. Create a new ACE configuration, or edit an existing one using Property Manager.
2. In the Property Configuration Settings options, click Add Behavior.

3. In the Search available behaviors field, input Add HTTP to filter the listed behaviors, and select Add
HTTP to HTTPS Upgrade from the list.

You also need to set up your origin to support HTTPS
You don't need to do anything to actually configure this behavior. Just adding it to your property enables the

conversion. However, if you've selected “Your Origin” as your Origin Server in your property, you also need
to:

Configure the additional settings that are revealed, with "Your origin" selected as your Origin Server.
» Properly configure your origin for HTTPS transfer

Note: This does not apply if you're using NetStorage as your origin. Akamai sets origin

security automatically for NetStorage when you add the HTTP to HTTPS Upgrade
behavior.

Additional considerations

» The upgrade is to Standard TLS (HTTPS L1). To use Enhanced TLS if you're transferring personally
identifiable information (PII), you need to create and provision an Enhanced TLS certificate, edit your
property to set Security Options and define a Property hostname to Edge hostname association.

This behavior uses 443 as the forward port for all products other than AMD, DD, and OD.

The Akamai Cloud Embed API v2

As an Akamai cloud partner, you can use the Akamai Cloud Embed (ACE) to provide Content Delivery
Network (CDN) features to your cloud customers, known as “subcustomers.” Use the ACE API v2 API to
add customers to access your unique ACE CDN instance, and manage policies of rules and behaviors
specific to each customer.

You can configure CDN features per domain and give subcustomers the ability to buy, configure, and
monitor Akamai’s CDN services directly through your portal. In most cases, once you create one or more
base configurations to support your business needs, you can use this API to support hundreds of thousands
of subcustomers per base configuration.

Before you begin

There are several prerequisites you need to meet. See Before you begin with the API on page 49 and
ensure that you've addressed all of the points there.

API concepts

Familiarize yourself with some of the common terms used in this API:

* Cloud partners. Akamai resellers or partners who provide delivery services to their customers. You,
as a user of this API, are a cloud partner, also referred to simply as “partner” throughout this
documentation.

» Subcustomers. A cloud partner’s customers are subcustomers. Akamai does not assign individual
Content Provider (CP) codes to subcustomers even though their traffic is sent over the Akamai
platform. As a Cloud Partner you have access to usage detail reports for each of your subcustomers,
based on the subcustomer IDs you provide Akamai.

» Subcustomer ID. This is a unique ID for each subcustomer within your own billing systems. All traffic
for a particular subcustomer is rolled up by this ID for billing purposes.

+ Base configuration. An Akamai delivery configuration that includes all of the common rules for
processing end-user requests. You use the Property Manager API or GUI application to configure
properties used for both ACE and ICA.

+ Sub-Customer Enablement behavior. In Property Manager, the subCustomer behavior controls
which individual ACE and ICA features you can use to handle your subcustomers’ traffic. You can set
up this behavior to provide access to all available features, or you can select a subset of features to
define different classes of service.

» Content Characteristics-Dynamic Web Content behavior. Include this behavior if you want to
enable specific ICA optimizations for your subcustomers.

» InstantConfig behavior. If your subcustomers specifically send HTTP traffic, you have to add the
instantConfig behavior to your property. This behavior, also known as Multi-Domain Configuration,
lets you to associate multiple web assets to a single property without adding each hostname
separately. It applies property settings to all incoming hostnames based on a DNS lookup.

* Policy. Policies determine how Akamai edge servers handle a given subcustomer’s requests. A
single policy is bound to a hostname. Your policy JSON is made up of rules, which contain both
match criteria and behaviors. When an incoming request meets the match criteria in a rule, it triggers

the behaviors listed in that rule. Make rules unique within a policy: they can’t have identical sets of
matches. A policy can also contain up to 100 behaviors.

Policy rules. Rules include both match criteria and behaviors. When an incoming request meets the
match criteria in a rule, it triggers the behaviors listed in that rule. Within a rule you can use each
match type and each behavior once. Also, no one rule can contain both a whitelist and blacklist
behavior of a given type. For example, you can add an IP whitelist and a referrer blacklist to a rule,
but you can’t have both an IP whitelist and an IP blacklist in the same rule. ACE applies rules from
top to bottom, so ensure you list them from least restrictive to most restrictive. For example, you
would list a match on ur1-wildcard value /* first because it would apply to all requests, where /
images/* would only apply to a subset of requests.

Policy matches. Within a rule, a match defines which subcustomer requests receive the behaviors
within the rule. If a match condition for a rule is met, ACE applies the behaviors set in a rule. When
constructing the matches array in a rule, the type of data you enter depends on the type of match.
For example, if you use the query string match, you have to enter the exact string and keep case
sensitivity in mind. If you use the url-scheme match, you enter either HTTP or HTTPS. Within a
match, you cannot repeat entries in the value string.

Policy behaviors. Like Property Manager, the ACE API uses behaviors to encapsulate settings to
customize a configuration. Behaviors are a part of a policy’s rules. A rule can have many behaviors
or only one. For the ACE API, you group rules into policies. You can have a maximum of 100
behaviors in a subcustomer policy. ACE rejects policies exceeding 100 behaviors upon submission.
Within a behavior, you cannot repeat entries in the value string.

There are other APls you can use

You can optionally use other Akamai APIs to perform other aspects of the configuration:

Property Manager API. You can use this API to create and update your base configurations for ACE.
This may be excessive, because you typically only need to interact with this configuration a single
time. So we recommend you use the Property Manager in Control Center, instead.

Media Delivery Reports. This API offers operations specific to ACE that let you retrieve usage and
quality metrics, but it doesn't include billing data. Currently, it combines ACE and ICA data: If a given
endpoint served both types of traffic during the selected time period, the report does not differentiate
between the two. In addition, this API also reports metrics for Adaptive Media Delivery, Download
Delivery, Object Delivery and RTMP Media Delivery.

Billing Center. This API provides access to CSV-based contract usage data for accounts you can
access. We provide separate reports for ACE and ICA per billing period. The ACE report lists
subcustomer usage (hits and bytes) by geography. The ICA report contains billing data for
subcustomers that used ICA, without reference to geography.

The ACE APl workflow

Here's a basic workflow that shows how to create a subcustomer ID and policy.

1. If not completed already, Set up a base configuration on page 11 and ensure that you configure the

Sub-Customer Enablement behavior to meet your needs. This configuration and behavior
determine baseline settings for use. It serves as a “limiter.” It states what settings can and can’t be
used in a policy for all subcustomers assigned to the configuration.

2. Complete the prerequisites in Before you begin with the APl on page 49.

3. Run the Add a new subcustomer operation to apply and register a “subcustomer ID” for each of your
customers.

4. Run the Create or update a policy operation for each subcustomer ID you need to add to your base
configuration. Set up the policy with individual rules and behaviors that you want applied when ACE
receives a request for that subcustomer’s content.

5. Test the end-to-end CDN functionality with each subcustomer. You should use a test domain to verify
both the functionality and the configuration.

6. For the final step to go live, change applicable DNS to switch Cloud Partner websites to the Akamai
platform.

Resources

This section provides details on the API’s various operations.

Operation Method Endpoint
Subcustomer
List all subcustomers GET /partner-api/v2/network/ {network}/

properties/{propertyId}/customers

Get a subcustomer GET /partner-api/v2/network/{network}/
properties/{propertyId}/customers/
{subcustomerId}

Add a new subcustomer PUT /partner-api/v2/network/{network}/
properties/{propertyId}/customers/
{subcustomerId}

Remove a subcustomer DELETE /partner-api/v2/network/ {network}/
properties/{propertyId}/customers/
{subcustomerId}

Property

List all sub-propetrties for a base GET /partner-api/v2/network/{network}/

configuration properties/{propertyld}/sub-properties

List all subcustomer domains GET /partner-api/v2/network/{network}/
properties/{propertyId}/customers/
{subcustomerId}/sub-properties

Policy

Get a policy GET /partner-api/v2/network/{network}/
properties/{propertyId}/sub-properties/
{domainName} /policy

Create or update a policy PUT /partner-api/v2/network/{network}/
properties/{propertyId}/sub-properties/
{domainName}/policy

Delete a policy DELETE /partner-api/v2/network/{network}/

properties/{propertyId}/sub-properties/
{domainName}/policy

Operation Method Endpoint

Get policy history GET /partner-api/v2/network/{network}/
properties/{propertyId}/sub-properties/
{domainName}/policy/history

Get latest active policy GET /partner-api/v2/network/{network}/

properties/{propertyId}/sub-properties/
{domainName}/policy/active

List all subcustomers

Returns a list of all subcustomers assigned to the selected base configuration (propertyId).

Request

GET /partner-api/v2/network/{network}/properties/{propertyIld}/customers

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/customers

Parameters
Parameter Type Sample Description
URL path parameters
network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.
propertyId String al23bcdefg45 The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID after
you create the
configuration.
Steps

1. Determine which network you want to gather information from. You can choose staging (testing)

or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base

configuration.

3. Make a GET request to /partner-api/v2/network/{network}/properties/
{propertyId}/customers.

4. Review the list of subcustomers and their geographies returned in the response.

Response

Status 200 application/json

Object type: SubCustomer

Response body:

"customerID":

"geoll . "FR",
"subPropertyIDs":

"Www
"WWW .
WWW

"WWW .

Get a subcustomer

Returns policy information for the selected subcustomer and activation network.

Request

.example.

example.

.example.

example.

"abc-123",

[
com",
biz",
net",
co.uk"

GET /partner-api/v2/network/{network}/properties/{propertyld}/customers/

{subcustomerId}

Sample: /partner-api/v2/network/production/properties/al23bcdefgd5/customers/

SC12345

Parameters

Parameter

Type

Sample

Description

URL path parameters

network

Enum

eration

production

The network for the
policy, either staging
for the testing network,
or production for the
live network.

propertyId

String

al23bcdefg4b

The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID after
you create the
configuration.

subcustomerId

String

SC12345

The unique ID of the
subcustomer. Your
organization assigns
this value.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base
configuration.

3. Run the List all subcustomers operation and store the customer value, which corresponds to the
subcustomerId URL parameter.

4. Make a GET request to /partner-api/v2/network/{network}/properties/
{propertyId}/customers/{subcustomerId}.

Response
Status 200 application/json
Object type: SubCustomer

Response body:

"geoll . "FR"

Add a new subcustomer
Add a new subcustomer ID to the selected base configuration (propertyId).

Request

PUT /partner-api/v2/network/{network}/properties/{propertyId}/customers/
{subcustomerId}

Sample: /partner-api/v2/network/production/properties/al23bcdefgd5/customers/
SC12345

Content-Type: application/json

Request body:

"geoll . "FR"

Parameters

Parameter Type Sample Description

URL path parameters

network Enumeration production The network for the
policy, either staging
for the testing network,

Parameter Type Sample Description

or production for the
live network.

propertyId String al23bcdefg45 The ID number of the

base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID after
you create the
configuration.

subcustomerId String SC12345 The unique ID of the

subcustomer. Your
organization assigns
this value.

Steps

1.

5.

Determine the network for the subcustomer. You can choose staging (testing) or production
(live).

. Contact your Akamai account representative for the propertyId assigned to the applicable base

configuration.

. You need to provide a unique ID for the subcustomer (subcustomerId). As the cloud partner, it's up

to you to determine a method to create these IDs and associate them with each subcustomer. The ID
can contain up to 50 alphanumeric, dot or dash characters.

. Make a PUT request to /partner-api/v2/network/{network}/properties/

{propertyId}/customers/{subcustomerId}. You also need to include the subcustomer’s geo
(geographic region) in a PUT request body. Use the valid two letter country designation (for example,
Us for United States or BR for Brazil).

Verify that the geo value returned in the response is accurate for the subcustomer you added.

Response

Status 200 application/json

Object type: SubCustomer

Response body:

{
}

"geo" . "FR"

Remove a subcustomer
Remove a specific subcustomer using its unique subcustomerId.

Request

DELETE /partner-api/v2/network/{network}/properties/{propertyId}/customers/
{subcustomerId}

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/customers/
SC12345

Parameters

Parameter Type Sample Description

URL path parameters

network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.

propertyld String al23bcdefg45 The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID after
you create the
configuration.

subcustomerId String SC12345 The unique ID of the
subcustomer. Your
organization assigns
this value.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base
configuration.

3. Run the List all subcustomer domains operation and store the customerID value, that applies to the
applicable subcustomer. Use this as the subcustomer1d URL parameter for this operation.

4. Make a DELETE requestto /partner-api/v2/network/{network}/properties/
{propertyId}/customers/{subcustomerId}.

5. Review the message in the response to verify the delete was successful.

Response

Status 200 application/json

Response body:

{

"description": "The subcustomer for property id '251922' and
subcustomer id '0004-propertyfolks' was successfully deleted.",
"message": "Successfully deleted"

}

List all sub-properties for a base configuration

Returns all of the domains (subPropertyID values) for subcustomers assigned to a selected base
configuration (propertyId) and activation network.

Request

GET /partner-api/v2/network/{network}/properties/{propertyld}/sub-properties

Sample: /partner-api/v2/network/production/properties/al23bcdefgd5/sub-properties

Parameters

Parameter Type Sample Description

URL path parameters

network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.

propertyId String al23bcdefgdb The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base
configuration.

3. Make a GET request to /partner-api/v2/network/{network}/properties/
{propertyId}/sub-properties.

Response

Status 200 application/json

Object type: SubProperty

Response body:

"subPropertyID": "www.example.com",
"customerID": "abc-123"

"subPropertyID": "www.example.biz",
"customerID": "abc-123"

"subPropertyID": "www.example.com.net",
"customerID": "def-456"

"subPropertyID": "www.example.com.co.uk",
"customerID": "def-456"

List all subcustomer domains

Returns domain-specific information for the selected subcustomer domain (subPropertyID) and activation
network.

Request

GET /partner-api/v2/network/{network}/properties/{propertyId}/customers/
{subcustomerId}/sub-properties

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/customers/
SC12345/sub-properties

Parameters

Parameter Type Sample Description

URL path parameters

network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.

propertyId String al23bcdefg45 The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.

subcustomerId String SC12345 The unique ID of the
subcustomer. Your
organization assigns
this value.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base

configuration.

3. Run the List all subcustomers operation and store the customer value, which corresponds to the
subcustomerId URL parameter.

4. Make a GET request to /partner-api/v2/network/{network}/properties/

{propertyId}/customers/{subcustomerId}/sub-properties.

Response

Status 200 application/json

Object type: SubProperty

Response body:

Returns the policy for the selected subcustomer domain, base configuration (propertyId), and activation

"customerID": "abc-123",
"geo" . "FR" 0
"subPropertyIDs": [
"www.example.com",
"www.example.biz",
"www.example.net",
"www.example.co.uk"
]
}
]
Get a policy
network.
Request

GET /partner-api/v2/network/{network}/properties/{propertyIld}/sub-properties/
{domainName}/policy

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/sub-

properties/www.example.com/policy

Parameters
Parameter Type Sample Description
URL path parameters
network Enumeration production The network for the

policy, either staging
for the testing network,

Parameter

Type

Sample

Description

or production for the
live network.

propertyId

String

al23bcdefg4db

The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.

domainName

String

wWww.example.com

The name of the
subcustomer’s domain.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base
configuration.

3. Run the List all sub-properties for a base configuration operation and store the value from the
subPropertyIDs array, that corresponds to the appropriate subcustomer’s customerID. Use this
as the domainName URL parameter for this operation.

4. Make a GET request to /partner-api/v2/network/{network}/properties/
{propertyId}/sub-properties/{domainName}/policy.

5. Review the rule information returned in the response.

Response

Status 200 application/json

Object type: Policy

Response body:

"rules":

{

[

"matches": [

{

"name" :
"value":

}
1,

"behaviors":

{

"params":
"originBasePath":
"cacheKeyValue":

"http-method",

"/",

"digitalProperty": "www.example.

"cacheKeyType":

"origin",

com",

"httpPort": 80,
"hostHeadervValue": "-",
"originDomain": "www.example.com",
"hostHeaderType": "origin"

I
"name": "origin",
lltype": ll_",

" Al

"value": "-

"name": "content-refresh",
lltype": llfixed",
"Value" . lllm"

}

1y
"activationStatus": "ACTIVE"

Create or update a policy
Create a new subcustomer policy or update an existing one.

Request

PUT /partner-api/v2/network/{network}/properties/{propertyId}/sub-properties/
{domainName} /policy

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/sub-
properties/www.example.com/policy

Headers:

X-Customer-ID: 100-example.com
X-Custom-Metadata: 100

Content-Type: application/json
Object type: Policy
Request body:

"rules": [
{
"matches": |
{
"name": "http-method",
"value": "GET"
}
1y
"behaviors": [
{
"params": {

"originBasePath": "/",
"cacheKeyValue": "-",

"digitalProperty":

"www.example.com"

"cacheKeyType": "origin",
"httpPort": 80,
"hostHeaderValue": "-",
"originDomain": "www.example.com",
"hostHeaderType": "origin"
s
"name": "origin",
"type": "-",
"value": "-"
by
{
"name": "content-refresh",
"type": "fixed",
"value": "1Im"
}
]
t
1,
"activationStatus": "ACTIVE"
}
Parameters
Parameter Type Sample Description
URL path parameters
network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.
propertyId String al23bcdefg45 The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.
domainName String WWw.example.com The name of the
subcustomer’s domain.
Steps

1. Determine the Akamai network for the policy. You can choose staging (testing) or production

(live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base

configuration.

3. Run the List all sub-properties for a base configuration operation and store the value from the
subPropertyIDs array, that corresponds to the appropriate subcustomer’s customeriD. Use this
as the domainName URL parameter for this operation.

4. Include a valid, registered subcustomer ID as the Xx-Customer-1ID header. You can also optionally
specify a string up to 50 characters in length to serve as the X-Custom-Metadata header, for use

in billing and reporting.

5. Make a PUT requestto /partner-api/v2/network/{network}/properties/
{propertyId}/sub-properties/{domainName} /policy. Include a properly formatted
request body with rules that consist of proper match criteria and the behaviors that you want applied
when a request for the subcustomer’s content meets that criteria.

6. Review the information returned in the response.

Response

Status 200 application/json
Object type: Policy

Response body:

"rules": [

{

"matches": [

{

"name" :
"value":

"http-method",
" GET "

}
1y
"behaviors": [
{

"params": {
"originBasePath":
"cacheKeyValue": 5
"digitalProperty": "www.example.com",
"cacheKeyType": "origin",

"httpPort": 80,

"hostHeaderValue": "-",
"originDomain": "www.example.com",
"hostHeaderType": "origin"

"/vv,

w_mn

by

"name" :
lltype" -
"value":

"name LI
lltype" -
"value":

}
1,

"activationStatus":

"origin",
w_mn
4
AL Al

"content-refresh",
"fixed",
" 1m"

"ACTIVE"

Delete a policy

Deletes the currently active policy file for the selected subcustomer domain and activation network.

Request

DELETE /partner-api/v2/network/{network}/properties/{propertyId}/sub-
properties/{domainName} /policy

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/sub-

properties/www.example.com/policy

Parameters
Parameter Type Sample Description
URL path parameters
network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.
propertyId String al23bcdefg45 The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.
domainName String WwWw.example.com The name of the
subcustomer’s domain.
Steps

1. Determine which Akamai network holds the policy you want to delete. Is it on the staging (testing)
or production (live) network?

2. Contact your Akamai account representative for the propertyId assigned to the applicable base

configuration.

3. Run the List all sub-properties for a base configuration operation and store the value from the
subPropertyIDs array, that corresponds to the appropriate subcustomer’s customerID. Use this
as the domainName URL parameter for this operation.

4. Make a DELETE requestto /partner-api/v2/network/{network}/properties/
{propertyId}/sub-properties/{domainName}/policy.

5. Review the message in the response to verify the delete was successful.

Response

Status 200 application/json

Response body:

"message": "Successfully deleted",
"description": "The policy was successfully deleted.",
"successInstanceId": "al23bcedfg45"

Get policy history
Returns policy change information for the selected subcustomer domain, base configuration (propertyId),
and activation network.

Request

GET /partner-api/v2/network/{network}/properties/{propertyld}/sub-properties/
{domainName}/policy/history

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/sub-
properties/www.example.com/policy/history

Parameters

Parameter Type Sample Description

URL path parameters

network Enumeration production The network for the
policy, either staging
for the testing network,
or production for the
live network.

propertyId String al23bcdefgdb The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.

domainName String www.example.com The name of the
subcustomer’s domain.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base
configuration.

3. Run the List all sub-properties for a base configuration on page 113 operation and store the
appropriate value from the subPropertyIDs array, which corresponds to the domainName URL
parameter.

4. Make a GET requestto /partner-api/v2/network/{network}/properties/
{propertyId}/sub-properties/{domainName}/policy/history.

5. Review the rule information returned in the response.

The response includes up to 100 of the most recent versions, not including the current version. If there are
more than 100 versions of a policy, ACE discards the oldest policy. (For example, version 101 replaces
version 1.)

Response

Status 200 application/json
Object type: Policy

Response body:

"policy": {
"rules": [
{
"behaviors": [
{
"name": "origin",
"params": {
"cacheKeyType": "digital property",
"cacheKeyValue": "-",
"digitalProperty":
"sportsguys.wsdtest.akalab.com",
"hostHeaderType": "digital property",
"hostHeadervValue": "-",
"originDomain": "sportsguys.wsdtest.akalab.com.s3-
website-us-west-1.amazonaws.com"

by

"value": mw_mn
t
1,
"matches": [
{
"name": "http-method",
"value": "GET"
}
]
bo
{
"behaviors": [
{
"name": "caching",
lltype": Ilfixed",
"value": "1h"
}
1y
"matches": [
{
"name": "url-extension",

"Value": "jpg"

"behaviors": |

1,

]
by

{

}

{

"name": "caching",
"type": "fixed",
"value": "14d"

"matches": [
"name": "url-extension",
"value": "mp4"
1440722458,

"update timestamp":

"version": 1

Get latest active policy

Returns the latest activated version of the policy, one with an activationStatus of ACTIVE. If no active
version exists, the API returns a 404 error.

Request

GET /partner-api/v2/network/{network}/properties/{propertyld}/sub-properties/
{domainName} /policy/active

Sample: /partner-api/v2/network/production/properties/al23bcdefg45/sub-
properties/www.example.com/policy/active

Parameters

Parameter

Type

Sample

Description

URL path parameters

network

Enumeration

production

The network for the
policy, either staging
for the testing network,
or production for the
live network.

propertyId

String

al23bcdefgd5

The ID number of the
base configuration file.
Akamai Cloud Embed
(ACE) automatically
generates this ID when
the configuration is
created.

domainName

String

WWw.example.com

The name of the
subcustomer’s domain.

Steps

1. Determine which network you want to gather information from. You can choose staging (testing)
or production (live).

2. Contact your Akamai account representative for the propertyId assigned to the applicable base
configuration.

3. Run the List all sub-properties for a base configuration on page 113 operation and store the
appropriate value from the subPropertyIDs array, which corresponds to the domainName URL
parameter.

4. Make a GET request to /partner-api/v2/network/{network}/properties/
{propertyId}/sub-properties/{domainName}/policy/active.

5. Review the rule information returned in the response.

Response

Status 200 application/json
Object type: Policy
Response body:

"rules": [
{
"matches": [
{
"name": "http-method",
"value": "GET"
}
1y
"behaviors": [
{
"params": {
"originBasePath": "/",
"cacheKeyValue": "-",
"digitalProperty": "www.example.com",
"cacheKeyType": "origin",
"httpPort": 80,
"hostHeadervValue": "-",
"originDomain": "www.example.com",
"hostHeaderType": "origin"
}y
"name": "origin",
Iltype": Il_",

ALl n

"value": "-

"name": "content-refresh",
lltypell: llfixed",
llvalue" . lllmll

"activationStatus": "ACTIVE"

Data

This section shows you the data model for the Akamai Cloud Embed API.

The main “{Object}” sections reveal an example of the JSON returned for a GET call. The “{Object}
Members” sub-sections illustrate elements that are required or optional, based on the call method. For
example, “required” indicates the element must be used in the request body for a PUT method call, and it is
always included in the response for a GET call.

The data schema tables below list membership requirements as follows:

v Member is required in requests, or always present in responses, even if its value is empty or
null.
o Member is optional, and may be omitted in some cases.
X Member is out of scope, and irrelevant to the specified interaction context. If you include the
member in that context, it either triggers an error, or is ignored.
SubCustomer

Allows you to add or update a subcustomer.

Sample GET response:

"customerID": "abc-123",
"geo" : "FR",
"subPropertyIDs": [
"www.example.com",
"www.example.biz",
www.example.net",
www.example.co.uk"

SubCustomer members

Member

Type Required Description

customerID String 4 The ID of the customer

assigned to the
subproperty.

geo

String v The geographic
location of the
subcustomer.

subPropertyIDs Array v Individual, unique

strings that represent

Member

Type

Required

Description

each subcustomer’s
domain.

SubProperty

Lists ID, domain, and geographic information for a subproperty, which is the subcustomer’s domain.

Sample GET response:

"subPropertyID": "www.example.

"customerID": "abc-123"

"subPropertyID": "www.example
"customerID": "abc-123"

"subPropertyID": "www.example.

"customerID": "def-456"

"subPropertyID": "www.example.

"customerID": "def-456"

SubProperty members

com",

loldz"

com.net",

com.co.uk",

Member

Type

Required

Description

SubProperty: Lists ID,
subcustomer’s domain.

domain, and geographic information for a subproperty,

which is the

customerID

String

The ID of the customer
assigned to the
subproperty.

geo

String

The geographic
location of the
subcustomer.

subPropertyID

String

A unique string
representing the
subcustomer’s domain.

Policy

Encapsulates rules consisting of match criteria and resulting behavior settings Akamai Cloud Embed (ACE)
applies for a specific subcustomer.

Sample GET response:

"rules": [

"matches": [
{
"name" :
"value":
t
1,
"behaviors": [

{

"params"

"originBasePath":

"http-method",
” GET ”

3 1
"/ll’

w_mn

"cacheKeyValue": p

"digitalProperty":
"cacheKeyType":
"httpPort":

"origin",
80,

" "

"hostHeaderValue": ,

"originDomain":
"hostHeaderType":

by

"name" :

Iltype" :
"value":

"name" :

lltype" :
"value":

}
1,

"activationStatus":

Sample of a GET on an older policy:

"policy": {
"rules": [
{
"behaviors":

{

"www.example.com",
"origin"

"origin",
w_mn
4
" n

"content-refresh",
"fixed",
" 1mll

"ACTIVE"

[

"www.example.com",

"name": "origin",
"params": {
"cacheKeyType":
"cacheKeyValue":
"digitalProperty":
"sportsguys.wsdtest.akalab.com",
"hostHeaderType":
"hostHeaderValue":
"originDomain": "sportsguys.wsdtest.akalab.com.
com"

"digital property",

w_mn

"digital property",

w_mn

website-us-west-1.amazonaws.

by

"value":

w_mn

}
1,

"matches": [

{

"name": "http-method",

"value": "GET"

"behaviors": [
{
"name": "caching",
"type": "fixed",
"value": "1h"
}
1y
"matches": [
{
"name": "url-extension",
"Value": "jpg"

"behaviors": [
{
"name": "caching",
"type": "fixed",
"value": "1d"
t
1,
"matches": [
{
"name": "url-extension",
"value": "mp4"

]
by
"update timestamp": 1440722458,
"version": 1

Sample of a GET on the latest active policy:

"rules": [
{
"matches": [
{
"name": "http-method",
"value": "GET"
}
1,
"behaviors": [
{

"params": {
"originBasePath": "/,
"cacheKeyValue": "-",
"digitalProperty": "www.example.com",
"cacheKeyType": "origin",

"httpPort": 80,

"hostHeadervValue": "-",
"originDomain": "www.example.com",
"hostHeaderType": "origin"
}y
"name": "origin",
lltype": Il_",
"Value": nw_mn
by
{
"name": "content-refresh",
lltype": llfixed",
"value": "Im"
}
]
}
1y
"activationStatus": "ACTIVE"
}
Policy members
Member Type PUT Description

Policy: Encapsulates rules consisting of match criteria and resulting behavior settings Akamai Cloud
Embed (ACE) applies for a specific subcustomer.

activationStatus Enumeration o The current
propagation status of
the policy. This can be
PROPAGATING for a
policy that is still being
processed, ACTIVE for
a policy that has
successfully completed
propagation, or
ACTIVATION FAILED
for a policy that
encountered an error
during propagation.
Get the policy to check
its configuration and
update the policy to
resubmit it for
propagation.

rules Policy.rules[] v The set of matches and
behaviors for this
subcustomer policy.

Policy.rules[]: The set of matches and behaviors for this subcustomer
policy.

behaviors Policy.rules[].behavior v The behaviors to apply
s(] to requests that meet
the match criteria set in
this policy. See
Behaviors below to

Member Type PUT Description
access more details on
the supported
behaviors.

matches Policy.rules[].matches]] v The criteria that identify

which requests to
process. When a
request matches the
criteria, ACE applies
the behaviors to the
request.

Policy.rules|[].behaviors[]: The behaviors to apply to requests that meet the match criteria set

in this policy.

name Enumeration v The specific behavior
you want to apply to
incoming requests that
meet the associated
match criteria.

params Object o The set of options that
determine how the
behavior operates.

type String v The format to use for
the value element.

value String 4 The values to use for

the selected behavior.

Policy.rules[].matches[]: The criteria that identify which requests to process. When a request

matches the criteria, ACE applies the behaviors to the request.

name

Enumeration

v

The specific match
criteria that must be
met to apply the
behaviors you
define. See Matches
below to access more
details on the
supported matches.

negated

Boolean

If set to true, ACE
applies the behaviors
set in this rule when an
incoming request does
not meet the match
criteria.

value

String

The value to match.

Matches

A match defines the criteria to be met in a request for subcustomer content in order to apply the behaviors

setin a rule.

» client-ip * url-extension

* CoOkKie » url-filename

* geography * url-path

* header » url-querystring

» host-name * url-scheme

* http-method * url-wildcard
Behaviors

Behaviors determine the settings ACE applies to the delivery of subcustomer content. Akamai Cloud Embed
(ACE) applies a behavior’s settings when a request that meets the rule’s match criteria is received for a
subcustomer’s content.

access-control
cachekey-query-args
caching

content-characteristics (for dynamic web
content)

content-characteristics (for large files)

content-characteristics (for on-demand
streaming)

content-characteristics (for live streaming)
content-compression

content-refresh

downstream-caching

geo-blacklist

geo-whitelist

ip-blacklist

ip-whitelist
modify-outgoing-request-header
modify-outgoing-request-path
modify-outgoing-response-header
origin

origin-characteristics
origin-failover

referer-blacklist

referer-whitelist

site-failover

token-auth

url-redirect

The "client-ip" match
Include this to match using the IP address assigned to the requesting client. You can specify individual IP
addresses, or CIDR blocks (that express a range of addresses).

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [
{
"name": "client-ip",
"Value": w_mn
"params": {
"ipOrCidrList": [
"1.2.3.4",
"5.6.7.8",
"192.168.100.14/24",
"2001:db8:abcd:8000::/50"
1y
"source": "both",
"ipFromHeader": "all"
s
"negated": true
}
1,
"behaviors": []
}
client-ip members
Member Type Required Description
name Enumeratio v Enter client-ip to match based on the
n requesting client’s IP address.
negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.
params client- v Specifies each set of addresses along with criteria
ip.params]] to match them.
value String 4 All match criteria require the value member, but

client-ip does not use one. Specify a dash for
this member (-).

client-ip.params []: Specifies each set of addresses along with criteria to match them.

ipFromHeader Enumeratio o When matching the x-Forwarded-For header,
n specifies which IP address to match in the list,
either the first IP address, or a1l to match any.
ipOrCidrList Array 4 Enter one or more specific IP addresses or CIDR

blocks of IP addresses. If a requesting client is
assigned to one of these IP addresses, the
behaviors set in this policy are applied. For

Member Type Required Description

example, ["1.2.3.4", "5.6.7.8",
"192.168.100.14/24",
"2001:db8:abcd:8000::/50"].

source Enumeratio o Specifies where to find the IP address, either
n connectingIp for the requesting client’s IP
address, headers for the X-Forwarded-For
header, or both to match either location.

The "cookie" match
Include this match to define specific cookie names for use when matching on an incoming request.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [
{
"name": "cookie",
"value": "cookie-name cookie-valuel cookie-value2",
"negated": true
}
1,
"behaviors": []

cookie members

Member Type Required Description

name Enumeratio v Enter cookie to use cookie names when
n matching on the incoming request.

negated Boolean) If set to true, Akamai Cloud Embed (ACE)

applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String v Specifies the case-insensitive cookie name to
match on. You can follow the cookie name with a
space-delimited list of cookie values to match
against, all of which are case-sensitive. Cookie
name and cookie values do not support white
spaces. Currently, the + ' () [1 { }
characters are not supported, even though they
are normally supported for use in cookies. For
example, cookiename cookievaluel
cookievalue?2.

The "geography" match

Use this match to test the requesting client’s location, either by continent, country, region, or designated
market area (DMA). Each subcustomer policy can include up to ten geography matches.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [
{
"name": "geography",
"value": "-"
"params": {
"continent": [
"AS",
IIEUH
1,
"country": [
"IN",
AL CAH
1,
"region": [
"US:CA",
"US:TX"
1,
"dma": [
500,
501,
502
] 14
"source": "both",
"ipFromHeader": "first"
}
}
1,
"behaviors": []
}
geography members
Member Type Required Description
name Enumeratio v Enter geography to match based on the
n requesting client’s geographic location.
negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.
params See the v Specifies any geographic area to match. You need
[geograph to include at least one continent, country,
y.params] region, or dma type, and at least one value for
array. each type, if specified. Any specified value
matches, so if you include N2 (North America) as

Member Type Required Description
a continent, you don’t need to include US as a
country.

value String 4 All match criteria require the value member, but

geography does not use one. Specify a dash for
this member (-).

geography.params: Specifies any geographic area to match. You need to include at least one
continent, country, region, or dma type, and at least one value for each type, if specified. Any
specified value matches, so if you include NA (North America) as a continent, you don’t need to
include US as a country.

continent

Array

Specify a list of two-letter continents to match: AF
for Africa, AS for Asia, EU for Europe, NA for North
America, oC for Oceania, SA for South America,
and oT for all others.

country

Array

Specify a list of two-letter countries to match. For
example, Us for United States and IN for India. A
list of supported Country Codes is available on
Akamai Control Center. Open the Data Codes
entry and click country_codes.csv to download
the list.

dma

Array

This only applies to the United States. Specify a
list of numeric designations as string values to
serve as designated market area (DMA) codes. A
DMA is a specific Nielsen Media Research area in
which the population can receive the same, or
similar Internet media offerings. A list of supported
DMA codes is available on Akamai Control
Center. Open the Data Codes entry and click
dma_list.txt to download the list.

ipFromHeader

Enumeratio
n

When matching the Xx-Forwarded-For header
for the source, specifies which geographic client
IP information to match, either the £irst client IP
listed for a specified geographic location, or a11 to
match any. The defaultis first.

region

Array

Specify a list of regions to match. Use the two
letter designation for a specific region (state or
territory), prefaced with the applicable country
and a colon. For example, US : CcA for California,
United States or CcA: BC for British Columbia,
Canada. A list of supported Country Codes is
available on Akamai Control Center. Open the
Data Codes entry and click country_codes.csv to
download the list.

source

Enumeratio
n

Specifies where to find the geographic
information, either connectingIp to use the
requesting client’s IP address, headers to use
the Xx-Forwarded-For header, or both to match
either location. The default is both.

The "header" match

Associated behaviors are applied if a header or header value you specify in this match criteria are included
with a request.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [
{
"name": "header",
"value": "header-name header-valuel header-value2",
"negated": false
}
]

14
ehaviors": []

header members

Member Type Required Description

name Enumeratio v Enter header to match on an incoming request
n header or header value.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)

applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String v Enter a header name, and optionally include an
associated header value, for the match (for
example, Some-Header-Name Or Some-
Header-Name "some string value"
"another value" or). Separate multiple
header value entries with spaces. Header values
are also case sensitive.

The "host-name" match
Include this to match on hostnames listed in the incoming request’s Host header.

Sample

Here's a ample inclusion for this match in a PUT policy operation:

"matches": [
{
"name": "host-name",
"value": "host-namel host-name2 host-name3",
"negated": false
}
1,

"behaviors": []

host-name members

Member Type Required Description
name Enumeratio v Enter host-name to match on hostnames listed in
n the incoming request’'s Host header.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String 4 Enter a space-separated list of hostnames to

match. You can use the ? and * wildcards with this
match value.

The "http-method" match
Include this to match on a set of HTTP methods included in a client request.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

{

"matches":
{
"name": "http-method",
"value": "PUT POST",
"negated": true
}
1,
"behaviors": []

http-method members

Member Type Required Description
name Enumeratio v Enter http-method to match based on HTTP
n method.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String v Enter the HTTP methods to match on, separated
by spaces. The following values are supported:
GET, HEAD, POST, PUT, DELETE, OPTIONS,
TRACE, and CONNECT.

The "url-extension" match

Include this to match on the extension in the incoming request. This match criteria has no effect on URL

paths that do not include a file extension.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [
{
"name": "url-extension",
"value": "Jjpg png gif",
"negated": false
}
1,
"behaviors": []

url-extension members

Member Type Required Description
name Enumeratio v Enter url-extension to match on the extension
n in the incoming request.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String v Enter the flename extensions to match on,
separated by spaces. This string cannot be empty
and entries are case sensitive.

The "url-filename" match

Include this to match on the filename and extension included in the incoming request.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [

{

"name": "url-filename",

"value": "filename.ext myfile.ext",

"negated": false
}
1,

"behaviors": []

url-filename members

Member Type Required Description

name Enumeratio v Enter url1-filename to match on the filename
n and extension included in the incoming request.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)

applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String v Enter a space-separated list of filenames to
match. Wildcards are not supported. (Include the
full name of the target file.) The filename can be in
any subdirectory or URL path. For example,
filename.ext matches on both /
filename.ext and /path/to/filename.ext.

The "url-path" match
Include this to match on the first path component in the incoming request. The first path component is the
section directly after the base URL.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

{

"matches": [
{
"name": "url-path",
"value": "new-files old-files",
"negated": false
t
1,
"behaviors": []

url-path members

Member Type Required Description

name Enumeratio v Enter url-path to match on the first path
n component in the incoming request.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)

applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String v Enter a space-separated list of path names to
match on. Do not include slashes with your entry.
This match is case sensitive and does not support
wildcard characters. For example, entering new-
files old-files matches on all URI paths that
begin with /new-files/ or /old-files/, like /
new-files/dirl/dir2/filename.ext.

The "url-querystring" match

Include this to match on a combination of query string parameters and their values.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": |
{
"name": "url-querystring",
"params": [
{
"key" : "test*"
}y
{
"key": "version*",
"values": "beta* *test*"
} 14
{
"key": "mode",
"values": "bypass"
}
1,
"negated": false
}
] 14
"behaviors": []
}
url-querystring members
Member Type Required Description
name Enumeration v Enter url-querystring to match on a
combination of query string parameters and their
values.
params See the url- o The parameters that define how you want to
querystring.p handle query strings for your implementation.
arams [] array.

your implementation.

url-querystring.parans []: The parameters that define how you want to handle query strings for

key String o Enter the query string to match on. You can use
the ? and * wildcards with your entry.
value String o Enter the query string values to match on,

separated by spaces. You can use the ? and *
wildcards with this match value.

The "url-scheme" match

Include this to match on the protocol or scheme (HTTP or HTTPS) of an incoming request.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": |
{
"name": "url-scheme",
"value": "HTTP",
"negated": true
}
1,

"behaviors": []

url-scheme members

Member Type Required Description
name Enumeratio v Enter url-scheme to match on the protocol or
n scheme (HTTP or HTTPS) of an incoming request.
negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.
value Enumeratio v Enter either HTTP or HTTPS depending on the
n protocol you want to match on.

The "url-wildcard" match

Include this match to use wildcards when matching on the incoming request path, minus any query strings.

This match type only supports the * wildcard.

Sample

Here's a sample inclusion for this match in a PUT policy operation:

"matches": [

{

"name": "url-wildcard",

"value": "/styles/* /images/baseball.png",

"negated": false
}
1,

"behaviors": []

url-wildcard members

Member Type Required Description
name Enumeratio v Enter url-wildcard to use wildcards when
n matching on the incoming request path, minus

query strings.

negated Boolean o If set to true, Akamai Cloud Embed (ACE)
applies the behaviors set in the subcustomer
policy when an incoming request does not meet
the match criteria.

value String 4 Enter the path to match on. If you do not include a
wildcard, the incoming request must match the
value exactly as entered.

The "access-control" behavior
Include this behavior to allow or deny client requests based on what’s specified as the matches criteria.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches":
"behaviors":

"name" :

lltype" :
"value":

(1,

[

access-control members

"access-control",
"denied",
"deny-protocol"

Member Type Required Description

name Enumeratio v Enter access-control to deny client requests
n based on any of the available match conditions.

type Enumeratio v Either deny or allow an incoming request that
n matches on this rule.

value String v Enter strings of up to 64 characters to annotate

logs with the approval or denial reason.
Alphanumeric characters, dashes, and
underscores are valid. For a type of allow, you
can also use the * wildcard character. Separate
strings with spaces.

The "cachekey-query-args" behavior

Include this behavior to determine how query string arguments within an incoming request should be
handled.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": |
{
"name": "cachekey-query-args",
"type": "include",
"value": "product=1"

cachekey-query-args members

Member Type Required Description
name Enumeratio v Enter cachekey-query-args to define how
n query-string arguments are handled when creating
the cache key for the Akamai edge server.
type Enumeratio v Options for handling query-string arguments. Use
n include-all to include all query-string values in

the cache key. Use include to only append the

query arguments listed in the cache key’s value
attribute. Use ignore-all to remove all query-

string arguments from the incoming request. Use
ignore to not include the query arguments listed
in the value attribute in the cache key.

value String v If using include or ignore as the caching type,
list the query strings to match on. The match is
case sensitive. Use spaces to separate entries.
Add an equal sign to the value to match the query
string argument exactly and also extend the value
of the query argument. For example, entering
product=1 matches both product=1 and
product=123 but not product=234. Not
required for the include-all and ignore-all
type settings.

The "caching" behavior

Include this behavior to define time-to-live (TTL) cache settings for subcustomers.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "caching",
"type": "fixed",
"value": "86400s"

caching members

Member Type Required

Description

name Enumeratio v
n

Enter caching to configure the time-to-live (TTL)
settings for a subcustomer based on specific
match conditions.

type Enumeratio v
n

Select the type of cache response to use. Choose
no-store to never cache the response and evict
any existing cache entry; bypass-cache to never
cache the response and retain the existing cache
entry; £ixed to cache the response for the time
period defined in value; honor to cache based
on the values in the cache-control and
expires headers; honor-cc to cache based on
the values in the cache-control header; or
honor-expires to cache based on the values in
the expires header.For the honor-based options,
objects currently in cache may be used with the
current request. Also, if the response doesn’t
include the Cache-Control or Expires header, the
object is cached based on the time listed in the
value parameter. For the honor and honor-cc
options, if the Cache-Control header includes a
no-store or no-cache directive, the Akamai
server doesn’t cache the response.No caching
occurs if the Expires header has an RFC 2616
time string in the past or includes -1, which helps
prevent downstream caching.

value String v/

Ignored for the no-store and bypass-cache
types. For all other type settings, enter a simple
duration string, which is an integer followed by a
specifier to represent seconds (s), minutes (m),

hours (h), or days (d). For example: 86400s, or

Member Type Required Description

1440m, or 24h, or 1d all represent a TTL setting of
one day.

The "content-characteristics-dynamic-web-content" behavior

Include the content-characteristics behavior and set the type to dynamic-web-content if you're
using Integrated Cloud Acceleration, to use SureRoute to optimize the forward path to the origin server. It
controls embedded object prefetching and situational image compression.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "content-characteristics",
"type": "dynamic-web-content",
llvalue": "_",
"params": {

"mobileImageCompressionEnabled": true,
"prefetchEnabled": false,
"realUserMonitoringEnabled": true,
"sureRouteTestObjectPath": "/sureroute"

content-characteristics-dynamic-web-content members

Member Type Required Description
name Enumeratio v Enter content-characteristics, the
n behavior that includes this optimization.
params See the o Optimization settings for this behavior.
[content-
character
istics-
dynamic-
web-
content.p
arams]
array
type Enumeratio v Enter dynamic-web-content to use Akamai’s
n SureRoute feature to optimize the forward path to
the origin server.
value String 4 Ignored for this behavior. For consistency, enter a
dash (-).

content-characteristics-dynamic-web-content.params: Optimization settings for this
behavior.

Member

Type

Required

Description

mobileImageCo
mpressionEnab
led

Boolean

o

Enable or disable JPEG compression based on
mobile network conditions.

prefetchEnabl
ed

Boolean

Inspects HTML responses and prefetches
embedded objects in HTML files. Prefetching
works on any page that includes ,
<script>, or <link> tags that specify relative
paths. It also works when the resource hostname
matches the request domain in the HTML file, and
it is part of a fully qualified URI. When set to true,
edge servers prefetch objects with the following
file extensions: aif, aiff, au, avi, bin, bmp,
cab, carb, cct, cdf, class, css, doc, dcr
dtd, exe, flv, gcf, gff, gif, grv, hdml, hgx,
ico, ini, jpeqg, jpg, js, mov, mp3, nc, pct,
pdf, png, ppc, pws, swa, swf, txt, vbs, w32,
wav, wbmp, wml, wmlc, wmls, wmlsc, xsd, and
zZ1p.

sureRouteTest
ObjectPath

String

Enable SureRoute by entering a valid path to the
test object on your origin. A valid test object is
between 4 KB to 12 KB compressed and requires
no authorization. SureRoute looks for the optimal
route between an edge server and an origin
server.

The "content-characteristics-large-files" behavior

Include the content-characteristics behavior and set the type to large-files to optimize the
delivery of large file downloads of up to 1.8 GB. This behavior uses partial object caching with prefetched

object data.

As a best practice, only use this behavior if you serve large files. Otherwise, the Akamai platform may send
additional requests to your origin. When using Large File Optimization, if an object doesn’t meet the
minimum size criterion of 10 MB, the platform requests the entire object from the origin.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name" :
"type": "large-files",
"value": "_",
"params": {

"objectSize":

}

"content-characteristics",

"10mbtol00mb"

content-characteristics-large-files members

Member Type Required Description
name Enumeratio ve Enter content-characteristics, the
n behavior that includes this optimization.
params See the o The parameters that define how you want to
[content- handle file optimization for your implementation.
character
istics-
large-
files.par
ams] array
type Enumeratio v Enter large-files to optimize the delivery of
n large file downloads of up to 1.8 GB.
value String v Ignored for this behavior. For consistency, enter a
dash (-).

handle file optimization for your implementation.

content-characteristics-large-files.params: The parameters that define how you want to

Enumeratio o
n

objectSize

Options include: 1t1mb for objects less than 1
MB, 1mbtol0mb for objects 1 MB to 10 MB,
10mbtol00mb for objects 10 MB to 100 MB, and
gt100mb for objects 100 MB and larger. Both
10mbtol00mb and gt100mb enable Large File
Optimization. Using 1t1mb or Imbtol0mb
disables partial object caching and prevents the
platform from serving large objects.

The "content-characteristics-on-demand-streaming" behavior
Include the content-characteristics behavior and set the type to streaming-video-on-demand
to optimize caching and network timeout conditions for on-demand video content.

The Akamai platform examines the URI file extension and path for the media format. It then automatically
optimizes cache efficiency, time-to-live, automated failover, downstream Content-Type headers, and

network timeout settings.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "content-characteristics",
"type": "streaming-video-on-demand",
"Value": "_",
"params": {
"segmentDurationDASH": "3.0",
"segmentDurationHDS": "4.0",
"segmentDurationHLS": "7.0",
"segmentDurationSmooth": "3.0",

"prefetch": {

"originAssist":

true

content-characteristics-on-demand-streaming members

Member Type Required Description
name Enumeratio v Specify content-characteristics, the
n behavior that includes this optimization.
params See the o The parameters that define how you want to
[content-— handle on-demand video streaming.
character
istics-
on-—
demand-
streaming
.params]
array
type Enumeratio Ve Specify streaming-video-on-demand to
n optimize cache and network timeout conditions for
on-demand video content.
value String v Ignored for this behavior. For consistency, enter a

dash (-).

content-characteristics-on-demand-streaming.params: The parameters that define how

you want to handle

on-demand vide

o streaming.

prefetch See the o To reduce delivery time, segment prefetching
[content- places target media content at the edge to
character anticipate end-user requests. Note: You can’t use
istics- prefetch with HDS format media.
on-—
demand-
streaming
.params.p
refetch]
array
segmentDurati Number o The duration in seconds for Dynamic Adaptive
onDASH Streaming over HTTP (DASH) media segments for
this subcustomer. The supported range is 0 to 15,
with only one decimal place allowed. If you omit
this member, ACE uses the duration set for DASH
Segment Duration in the Content Characteristics
- Streaming Video On Demand behavior in the
assigned base configuration. Otherwise, ACE
uses the default segment duration for DASH (6.0
seconds).
segmentDurati Number o The duration in seconds for HTTP Dynamic
onHDS Streaming (HDS) media fragments for this

Member Type Required

Description

subcustomer. The supported range is 0 to 15, with
only one decimal place allowed. If you omit this
member, ACE uses the duration set for HDS
Fragment Duration in the Content Characteristics
- Streaming Video On Demand behavior in the
assigned base configuration. Otherwise, ACE
uses the default fragment duration for HDS (6.0
seconds).

segmentDurati Number ©

onHLS

The duration in seconds for HTTP Live Streaming
(HLS) media segments. The supported range is 0
to 15, with only one decimal place allowed. For
recommended best practices, see Apple Technical
Note 2224. If you omit this member, ACE uses the
duration set for HLS Segment Duration in the
Content Characteristics - Streaming Video On
Demand behavior in the assigned base
configuration. Otherwise, ACE uses the default
segment duration for HLS (10.0 seconds).

segmentDurati Number o

onSmooth

The duration in seconds for Microsoft Smooth
Streaming media fragments. The supported range
is 0 to 15, with only one decimal place allowed. If
you omit this member, ACE uses the duration set
for Smooth Fragment Duration in the Content
Characteristics - Streaming Video On Demand
behavior in the assigned base configuration.
Otherwise, ACE uses the default fragment
duration for Smooth (2.0 seconds).

content-characteristics-on-demand-streaming.params.prefetch: To reduce delivery
time, segment prefetching places target media content at the edge to anticipate end-user requests. Nofe:

You can’t use prefetch with HDS format media.

originAssist Boolean o

This enables prefetching using the origin-assist
scheme. When Akamai fetches an object from an
origin, the response needs to include a new
header that lists the next object in the sequence.
Akamai can read this information and prefetch this
object. This scheme relies on assistance from
your “intelligent” origin to trigger prefetching.
Requirements and setup of an origin are explained
in Add prefetching support for video on page 91.

The " content-characteristics-live-streaming" behavior

Include the content-characteristics behavior and set the type to streaming-video-1live to
optimize caching and network timeout conditions for live video content.

The Akamai platform examines the URI file extension and path for the media format. It then automatically
optimizes cache efficiency, time-to-live, automated failover, downstream Content-Type headers, and

network timeout settings.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": |
{
"name": "content-characteristics",
"type": "streaming-video-live",
"Value": nw_mn
"params": {
"segmentDurationDASH": "3.0",
"segmentDurationHDS": "4.0",
"segmentDurationHLS": "7.0",
"segmentDurationSmooth": "3.0",
"prefetch": {
"originAssist": true

}

content-characteristics-live-streaming members

Member Type Required Description
name Enumeratio v Specify content-characteristics, the
n behavior that includes this optimization.
params See the o The parameters that define how you want to
[content- handle live video streaming.
character
istics-
live-
streaming
.params]
array
type Enumeratio v Specify streaming-video-1ive to optimize
n delivery for live video content.
value String v Ignored for this behavior. For consistency, enter a

dash (-).

content-characteristics-live-streaming.params: The parameters that define how you want
to handle live video streaming.

prefetch

See the o To reduce delivery time, segment prefetching
[content-— places target media content at the edge to
character anticipate end-user requests. Note: You can’t use
istics- prefetch with HDS format media.

live-

streaming

.params.p

refetch]

array

Member Type Required Description

segmentDurati Number o The duration in seconds for Dynamic Adaptive

onDASH Streaming over HTTP (DASH) media segments.
The supported range is 0 to 10, with only one
decimal place allowed. If you omit this member,
ACE uses the default segment duration for DASH
(6.0 seconds).

segmentDurati Number o The duration in seconds for HTTP Dynamic

onHDS Streaming (HDS) media fragments. The supported
range is 0 to 10, with only one decimal place
allowed. If you omit this member, ACE uses the
default fragment duration for HDS (6.0 seconds).

segmentDurati Number) The duration in seconds for HTTP Live Streaming

onHLS (HLS) media segments. The supported range is 0
to 10, with only one decimal place allowed. For
recommended best practices, see Apple Technical
Note 2224. If you omit this member, ACE uses the
default segment duration for HLS (10.0 seconds).

segmentDurati Number) Duration in seconds for Microsoft Smooth

onSmooth Streaming media fragments. The supported range

is 0 to 10, with only one decimal place allowed. If
you omit this member, ACE uses the default
fragment duration for Smooth (2.0 seconds).

content-characteristics-live-streaming.params.prefetch: To reduce delivery time,
segment prefetching places target media content at the edge to anticipate end-user requests. Note: You
can’'t use prefetch with HDS format media.

originAssist

Boolean

o

This enables prefetching using the origin-assist
scheme. When Akamai fetches an object from an
origin, the response needs to include a new
header that lists the next object in the sequence.
Akamai can read this information and prefetch this
object. This scheme relies on assistance from
your “intelligent” origin to trigger prefetching.
Requirements and setup of an origin are explained
in Add prefetching support for video on page 91.

The "content-compression" behavior

Include this behavior to provide compression settings. You can enable gzip compression, decompress
objects before delivering them to the client, or maintain the origin’s compression settings.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches":

{

"name" :

lltypell :
"value":

(1,

"behaviors":

[

"params": {

"content-refresh",
"date-time",
"2018-12-31T11:59:59z",

"mustRevalidate": true
}
}
]
}
content-compression members
Member Type Required Description
name Enumeratio v Enter content-compression to enable this
n behavior.
type Enumeratio v Select the appropriate compression setting for this
n behavior. Use always to compress all objects
served to clients that send an Accept-
Encoding:*gzip* header, never to
decompress objects served to the client, and
follow-origin to retain the origin’s
compression settings.
value String v Enter the MIME types to compress, separated by
spaces. The maximum string length is 1024
characters, and wildcards can be used (*). Enter -
if you do not want to apply compression to any
MIME type.

The "content-refresh" behavior

Include this behavior to invalidate the CDN cache at an explicit date and time. This behavior uses epoch
time to denote when a request should receive a new copy of the object or a newly validated one.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": |
{
"name": "content-refresh",
"type": "epoch",
"value": "1543273814",
"params": {
"mustRevalidate": true
}
}
]
}
content-refresh members
Member Type Required Description
name Enumeratio v Enter content-refresh to invalidate CDN
n cache at an explicit date/time.

Member Type Required Description

params See the o Settings used by this behavior to reapply
[content- validation to content.
refresh.p
arams]
array

type Enumeratio v Declares the format of the value element. Enter
n epoch to use epoch time; date-time to use an

ISO 8601 time value (YYYY-MM-DDThh :mm: ssZ2);
date to use an ISO 8601 date value (YYYY-MM-
DD), which invalidates cache at midnight GMT on
the specified date; and natural to invalidate
content immediately upon publication of the
content policy.

value String v The time after which the invalidation of objects in
cache should occur.

content-refresh.params: Settings used by this behavior to reapply validation to content.

mustRevalidat Boolean o If true, the edge server only serves content from
e cache if it has been validated again after the given
invalidation time. If false, the edge server may
serve content from cache if an attempt to validate
the content again fails to receive a response from
the origin server.

The "downstream-caching" behavior
Include this behavior to control downstream caching of alternate content.

Only use this behavior if site failover is enabled for the alternate hostname property. If you do not include
this behavior, your subcustomer policy uses the downstream caching settings specified in the alternate
hostname property. To enable site failover, use the Subcustomer Enablement behavior in Property Manager.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "downstream-caching",
"value": "no-store"

downstream-caching members

Member Type Required Description

name Enumeratio v Enter downstream-caching to control
n downstream caching of alternate content.

Member Type Required Description

value Enumeratio v Enter no-store to serve the alternate response
n with an HTTP Cache-Control: no-store
header. Enter no-cache to serve the alternate
response with an HTTP Cache-Control: no-
cache header.

The "geo-blacklist" behavior

Include this behavior to block access to content based on the continent, country, region/state, or designated
marketing area (DMA) of the requesting IP address. (DMA only applies in the United States.) All other
geographic areas are allowed.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "geo-blacklist",
"type": "region",
"value": "US:CA US:OR US:WA US:ID US:AZ US:NV"

geo-blacklist members

Member Type Required Description
name Enumeratio v Enter geo-blacklist to block access to content
n based on the geographic location of the
requesting IP address.
type Enumeratio v Declares the type of geographies to blacklist. Valid
n types are continent, country, region, and
dma.
value String v Enter a space-separated list of geographic areas

to blacklist. Proper values for these areas are
maintained in the EdgeScape Data Codes lists on
Akamai Control Center. Each continent and
country follows a two-digit format. If matching on
region values, these follow a country:region
format like US: AK (Alaska in the United States). If
matching on dma, enter the integer that represents
the Designated Market Area (DMA). Larger areas
are include smaller ones, so if you include NA
(North America) as a continent, you don’t need to
include US as a country.

The "geo-whitelist" behavior
Include this behavior to allow access to content based on the continent, country, region/state, or designated
marketing area (DMA) of the requesting IP address. (DMA only applies in the United States.) All other

geographic areas are denied.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

{

"matches": [],
"behaviors": [
"name": "geo-whitelist",
"type": "country",
"value": "US:CA US:0OR US:WA US:ID US:AZ US:NV"

geo-whitelist members

Member Type Required Description
name Enumeratio v Enter geo-whitelist to allow access to content
n based on the geographic location of the
requesting IP address.
type Enumeratio v Declares the type of geographies to whitelist. Valid
n types include: continent, country, region,
and dma.
value String v Enter a space-separated list of geographic areas

to whitelist. Proper values for these areas are
maintained in the EdgeScape Data Codes lists on
Control Center. Each continent and country
follows a two-digit format. If matching on region
values, these follow a country:region format
like US: AK (Alaska in the United States). If
matching on dma, enter the integer that represents
the Designated Market Area (DMA). Larger areas
are inclusive of smaller ones, so if you include NA
(North America) as a continent, you don’t need to
include US as a country.

The "ip-blacklist" behavior
Include this behavior to block access based on the requesting IP address. All other requesting IP addresses
are allowed access.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

{

"matches": [],

"behaviors": [

{

"name": "ip-blacklist",
"value": "10.10.1.100 10.10.2.100 10.10.3.100"

ip-blacklist members

Member Type Required Description
name Enumeratio v Enter ip-blacklist to block access based on
n the requesting IP address.
value String 4 Enter a space-separated list of IP addresses or
CIDR blocks to deny. All other IP addresses are
allowed.

The "ip-whitelist" behavior

Include this behavior to allow access based on the requesting IP address. Only the IP addresses listed are
allowed access.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "ip-whitelist",
"value": "10.10.1.100 10.10.2.100 10.10.3.100"

ip-whitelist members

Member Type Required Description
name Enumeratio v Enter ip-whitelist to allow access based on
n the requesting IP address.
value String 4 Enter a space-separated list of IP addresses or
CIDR blocks to allow. All other IP addresses are
blocked.

The "modify-outgoing-request-header" behavior
Include this behavior to modify the outgoing request headers sent from Akamai to an origin. This also works
on request headers sent from a client if the request is sent back to the origin, but not a cache hit.

Samples

Here's a sample of this behavior in a policy to append the header values, add this value and
also _add this value to the outgoing request header, headerl; append add this value to the
outgoing request header, header2; and set a comma plus a space (,) as the delimiter:

"matches": [],
"behaviors": [
{
"name": "modify-outgoing-request-header",
"type": "append",
llvalue": "_",
"params": {
"headerList": [
{
"headerl": "add this value, also add this value"
b
{
"header2": "add this value"
t
1,
"delimiter": ", "

This is a sample of this behavior in a policy to delete the header values, this is an old value and
this is an older value from the outgoing request header, headerl; delete the empty header,
header?2; and set the semicolon and a space (;) set as a delimiter:

"matches": [],
"behaviors": [
{

"name": "modify-outgoing-request-header",

"type": "delete",

"Value": "_"’

"params": {

"headerList": [
{
"headerl": "this is an old value;

this is an older value"
by
{
"header2": ""
}
1,

"delimiter": "; "

Finally, here's a sample of this behavior in a policy to match the header, header1 and overwrite its header
value with replace with this new header value (withno delimiter, because an overwrite
doesn’t use one):

"matches": [],
"behaviors": [
{

"name": "modify-outgoing-request-header",

"type": "overwrite",

llvalue": nw_mn

"params": {

"headerList": [
{
"headerl": "replace with this new header value"

}

modify-outgoing-request-header members

Member Type Required Description

name Enumeratio v Set to modify-outgoing-request-header to
n modify an outgoing request header.

params See the v Use these members to provide attributes to modify
[modify- outgoing request headers.
outgoing-
request-
header.pa
rams] array

type Enumeratio v Specifies the type of modification to perform if the
n request meets the criteria set in the rule’s match.

Set this to append to add a given header value to
a header name set in the headerList. Set this to
delete to remove a given header value from a
header name set in the headerList. Set this to
overwrite to match on a specified header name
and replace its existing header value with a new
one you specify. Caveats apply to each type. .
See Usage caveats, below.

value String v/ This is ignored for this behavior, but required for
consistency in the API. Set the value to a dash (-).

modify-outgoing-request-header.params: Use these members to provide attributes to modify
outgoing request headers.

Member Type Required Description

delimiter Enumeratio o Specifies the delimiter to be used when indicating

n multiple values for a header. Set this to a
<space>, , (comma), ; (semicolon), ,<space>
(comma and space), or ; <space> (semicolon and
space). Delimiters are only supported for use with
append and delete. Caveats apply to
delimiter use. This defaults to a , if nothing is
set. See Usage caveats, below.

headerList Array v A collection of key value pairs that specify the

headers and associated values to be modified.
The key sets the header name to be modified and
the value is the header value to be appended,
deleted or overwritten. Various caveats apply to
header names and values. See Usage caveats,
below.

Usage caveats

Consider the following usage caveats before applying this behavior.

You can modify a maximum of 15 request headers with this behavior, in a single policy.
You can use each behavior type (append, delete, and overwrite) once in a single rule.
You can’t modify the same header more than once in a single policy.

You can use multiple modify-outgoing-request-header behaviors in the same rule. Ensure
they don’t conflict, based on other caveats in this list. (This only applies to this behavior.)

You can’t use a CRLF or a colon in header names or header values.

The append and overwrite behavior types create a non-existent header and apply the specified
header value.

The append behavior type won't append a header value if it already exists in the header. If duplicate
instances of a header value are identified, they are left as is because the append type only adds
content, it does not remove anything. Use the overwrite type in this scenario to completely replace
the header content, and remove duplicate values.

If multiple occurrences of a single header are included in a request, an append or delete behavior
type only applies to the first occurrence. That header is modified and sent to the origin, and all other
instances of the same header in the request are ignored. If you don’t include the modify-
outgoing-request-header, all occurrences of a request header are sent to the origin.

The delete behavior type can be used to remove an empty header. (If it has no header value.) Just
include the header name, and leave the header value empty (for example, "my header": "").

The delete behavior type only removes a value from a header if that value is found. If the value
isn’t found, it does nothing.

If the delete behavior type removes the only header value, older origin servers may experience
issues. (This can result in a “null pointer exception” on an older origin server not built to handle empty
headers.)

* When delimiter-separating multiple header values in a delete, values are deleted only if they exist
in the order specified. For example, if the policy is set to match and delete "header1":
"valuel,value3", and the actual request header is "headerl: valuel,value2,value3",
nothing is deleted, because the exact match, "valuel, value3" wasn’t found. However, if the
actual request header is "headerl: value2,valuel,value3",valuel and value3 are
deleted because they match the order set.

+ The overwrite behavior type overwrites all header value information for a header name it matches.
» If you don’tinclude the delimiter object, it defaults to a comma.

» If you use a delimiter to include a list of header values, it must match what’s set for the delimiter
member (or a comma if you didn’t set one.) Otherwise, the APl matches on exactly what’s set.

» If you include a delimiter when using the overwrite behavior type, Akamai Cloud Embed
ignores it.

* Header names are case-insensitive when matching eligible headers, for all behavior types.

* Header values are case-sensitive when matching eligible headers for append and delete. (Header
values are replaced for overwrite, so no matching is performed.)

+ Since header names are case-insensitive, the header name you set in a policy is what’s used as the
header name once modified.

Blacklisted request headers

These headers can’t be modified. If the type criteria set matches one of these headers, an error is
revealed. Both header names and values are case-insensitive when matching on blacklisted headers. The *
represents a wildcard.

e Connection

e Content-Length

e Forwarded

e Host

o« TE

e Upgrade

e x-akamai*

e x-cache~*
Blacklisted header values
You can’t modify these items in a header value.

e akamai-x-*

Known issue: appending multiple header values and duplicate, existing values

When you use the append behavior type and include multiple header values, if a header value already
exists, this behavior duplicates it in the resulting header.

For example, assume you have the existing header, "header1": "valuel;value2" and you set this
behavior to append: "headerl": "valuel;value3;value4d". Thisresultsin "headerl:
valuel;value2;valuel;value3;valued". This is because the APl is trying to match on the full value
you've specified, "valuel;value3;valued" when checking for duplicates.

As a best practice, you should only include multiple header values for an append if you’re sure one of those
values doesn'’t already exist.

The "modify-outgoing-request-path" behavior
Include this behavior to provide options for altering the request URL before it is sent to origin.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "modify-outgoing-request-path",
"type": "replace",
"value": "/dirl/dir2/###/dir4d/"

modify-outgoing-request-path members

Member Type Required Description
name Enumeratio v Enter modify-outgoing-request-path to
n alter the request URL before it is sent to origin.
type Enumeratio v Set the type of request path change to use. Enter
n remove to remove the first occurrence of the

value from the outgoing request URL; replace-
all to replace the original request path before the
filename with the path specified in value; or
replace to search for a portion of the original
request URL and replace it with a value you
define.

value String 4 If using remove, enter the string of characters to
remove from the forward request. The behavior
doesn’t remove leading and trailing slashes. If
using replace-all, enter the URL path to
replace the original incoming URL path. If using
replace, enter a value in this format: /£ind/
path/###/replace/ path/, where ###
separates the string to find and the string to
replace. For example, if your base URL is
www.example.com/dirl/dir2/dir3/
index.html and you enter /dirl/dir2/###/
dir4/ asthe value, the resulting URL is
www.example.com/dird4/dir3/index.html.

The "modify-outgoing-response-header" behavior
Include this behavior to modify the outgoing response headers sent from the Edge server back to the client.

Samples

Here's a sample of this behavior in a policy to append the header value, new valuel to the outgoing
response header, headerl; append the values newer valuel and newest valuel to the outgoing
response header, header?2; and set the semicolon (;) as the delimiter:

"matches": [],
"behaviors": [
{
"name": "modify-outgoing-response-header",
"type" . "append",
"Value": "_",
"params": {
"headerList": [
{
"headerl": "new valuel"
}y
{
"header2": "newer valuel;newest valuel"
}
1y
"delimiter": ";"

This is a sample of this behavior in a policy to delete the empty header, header1; and delete the header
values, o1d value, older value, and oldest value from the outgoing response header, header?2

(The behavior only deletes these values if they exist in header?2 in the order specified. See Usage caveats,
below):

"matches": [],
"behaviors": [
{
"name": "modify-outgoing-response-header",
"type": "delete",
"Value": "_H,
"params": {
"headerList": [
{
"headerl": ""
b
{
"header2": "old value,older value,oldest value"

}
1,

"delimiter"™: ","

Finally, here's a sample of this behavior in a policy to match the header, header1 and overwrite its header
value with use this instead (with no delimiter, because an overwrite doesn’'t use one):

"matches":
"behaviors":

{

"name" :
"type" :
"value":
"params": {

"headerList":

(1,

[

w_mn

{

"headerl":

}

[

modify-outgoing-response-header members

"modify-outgoing-response-header",
"overwrite",

"use this instead"

Member Type Required Description
name Enumeratio v Set to modify-outgoing-response-header
n to modify an outgoing response header.
params See the v Use these members to provide attributes to modify
[modify- outgoing response headers.
outgoing-
response-
header.pa
rams] array
type Enumeratio v Specifies the type of modification to perform if the
n response meets the criteria set in the rule’s match.
Set this to append to add a given header value to
a header name set in the headerList. Set this to
delete to remove a given header value from a
header name set in the headerList. Set this to
overwrite to match on a specified header name
and replace its existing header value with a new
one you specify. Caveats apply to each type. See
Usage caveats, below.
value String v This is ignored for this behavior, but required for
consistency in the API. Set the value to a dash (-).
modify-outgoing-response-header.params: Use these members to provide attributes to modify
outgoing response headers.
delimiter Enumeratio o Specifies the delimiter to be used when indicating
n multiple values for a header. Set this to a

Member Type Required Description

<space>, , (comma), ; (semicolon), ,<space>
(comma and space), or ; <space> (semicolon and
space). Delimiters are only supported for use with
append and delete. Caveats apply to
delimiter use. This defaults to a , if nothing is
set. See Usage caveats, below.

headerList Array v A collection of key value pairs that specify the

headers and associated values to be modified.
The key sets the header name to be modified and
the value is the header value to be appended,
deleted or overwritten. Various caveats apply to
header names and values. See Usage caveats,
below.

Usage caveats

Consider the following usage caveats before applying this behavior.

You can modify a maximum of 15 response headers with this behavior, in a single policy.
You can use each behavior type (append, delete, and overwrite) once in a single rule.
You can’t modify the same header more than once in a single policy.

You can’t use a CRLF or a colon in header names or header values.

The append and overwrite behavior types create a non-existent header and apply the specified
header value.

The append behavior type won'’t append a header value if it already exists in the header. If duplicate
instances of a header value are identified, they are left as is because the append type only adds
content, it does not remove anything. Use the overwrite type in this scenario to completely replace
the header content, and remove duplicate values.

If multiple occurrences of a single header are included in a request, an append or delete behavior
type only applies to the first occurrence. That header is modified and sent to the origin, and all other
instances of the same header in the request are ignored. If you don'’t include the modify-
outgoing-response-header, all occurrences of a request header are sent to the origin.

The delete behavior type can be used to remove an empty header. (If it has no header value.) Just
include the header name, and leave the header value empty (for example, "my header": "")

The delete behavior type only removes a value from a header if that value is found. If the value
isn’t found, it does nothing.

If the delete behavior type removes the only header value, older origin servers may experience
issues. (This can result in a “null pointer exception” on an older origin server not built to handle empty
headers.)

When delimiter-separating multiple header values in a delete, values are deleted only if they exist
in the order specified. For example, if the policy is set to match and delete "header1":
"valuel,value3", and the actual request header is "headerl: valuel,value2,value3",
nothing is deleted, because the exact match, "valuel, value3" wasn’t found. However, if the

actual request header is "headerl: value2,valuel,value3",valuel and value3 are
deleted because they match the order set.

« The overwrite behavior overwrites all header value information for a header name it matches.
* If you don’tinclude the delimiter object, it defaults to a comma.

+ If you use a delimiter to include a list of header values, it must match what's set for the delimiter
member (or you must use commas if you didn’t set one.) Otherwise, the API matches on exactly
what’s set.

» If you include a delimiter when using the overwrite behavior type, Akamai Cloud Embed
ignores it.

* Header names are case-insensitive when matching eligible headers, for all behavior types.

* Header values are case-sensitive when matching eligible headers for append and delete. (Header
values are replaced for overwrite, so no matching is performed.)

» Since header names are case-insensitive, the header name you set in a policy is what's used as the
header name once modified.

Blacklisted response headers

These headers can’t be modified. If the type criteria set matches one of these headers, an error is
revealed. Both header names and values are case-insensitive when matching on blacklisted headers. The *
represents a wildcard.

e Age

e Alt-Svc

e Connection

e Content-Encoding

e Content-Length

e Content-Range

e Transfer-Encoding

* Vary

e x-akamai*

e x-cache*
Blacklisted header values
You can’t modify the following items when they occur in a header value.

e akamai-x-*

Known issue: appending multiple header values and duplicate, existing values

When you use the append behavior type and include multiple header values, if a header value already
exists, this behavior duplicates it in the resulting header.

For example, assume you have the existing header, "header1": "valuel;value2" and you set this
behavior to append: "header1": "valuel;value3;value4". Thisresults in "headerl:
valuel;value2;valuel;value3;valued". This is because the APl is trying to match on the full value
you've specified, "valuel;value3;value4" when checking for duplicates.

As a best practice, you should only include multiple header values for an append if you’re sure one of those
values doesn’t already exist.

The "origin" behavior
Include this behavior to provide origin settings for the specific subcustomer.

You need to include: origin DNS hostname, forward host header, and cache key. Optional settings include
the origin base path and ports.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "origin",
"Value": "_ll,
"params": {
"digitalProperty": "www.mysite.com",
"originDomain": "c1234567.cloudprovider.com",
"cacheKeyType": "origin",
"cacheKeyValue": "-",
"hostHeaderType": "digital property",
"hostHeaderValue": "-"

origin members

Member Type Required Description
name Enumeratio o Enter origin to set up the origin behavior.
n Akamai Cloud Embed requires an origin in every
content policy.
params See the o) Origin settings for the policy.
[origin.p
arams]
array
value String o Enter a dash (-) for this parameter.

origin.params: Origin settings for the policy.

Member Type Required Description

cacheKeyType Enumeratio o Enter the method to use when constructing the

n cache key. Use digital property if the
response is different for each property, origin if
the origin response is the same regardless of
property, or fixed to set a specific cache key
value.

cacheKeyValue String o If cacheKeyType is fixed, enter a valid domain
name for the hostname portion of the cache key.
Use a dash (-) to indicate no value.

digitalProper String o Enter the hostname used by the client to access
ty the site or application. Use a valid domain name
like www.example.com or
blogs.example.com.

hostHeaderTyp Enumeratio o For requests sent to this origin, enter the host
e n header value to generate. Use

digital property to have the host header
match the digital property, origin to use the
originDomain value as the host header, and
fixed to use the hostHeaderValue as the
host header.

hostHeaderVval String o If hostHeaderType is fixed enter a valid
ue domain name to use in the host header. Use a
dash (-) to indicate no value.

originDomain String o Enter the origin hosthame you provide to
subcustomers when you provision services. Your
entry can either be a valid domain name or an IP
address.

The "origin-characteristics" behavior
Include this behavior if you have Integrated Cloud Acceleration (ICA), to select the type of origin supporting
your Akamai Cloud Embed implementation.

Use the origin behavior to configure origin settings for your subcustomers, at the policy level.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
A LI A 3 J — J 3 n
name": "origin-characteristics",
"value": "azure"

origin-characteristics members

Member Type Required Description
name Enumeratio v Use the origin-characteristics behavior to
n select the type of origin you are using for your
Akamai Cloud Embed implementation.
type Enumeratio v The type of origin supporting your implementation.
n Enter azure if you use an Azure Media Services

live origin. Use unknown for all other origins.

The "origin-failover" behavior

Origin failover identifies primary origin connection failures based on a type you specify and marks that origin
as “bad” after connections to all its IPs fail repeatedly. Rather than issuing a redirect to the end user,
requests are failed over to a backup origin you call out.

This improves response times, because the end user doesn’t have to wait several seconds for a connect-
timeout on the forward request. Additionally, you specify a duration of time the primary origin is marked as
bad. During this time, all requests are failed over to your backup origin. This relieves pressure on the

primary by reducing the number of connection attempts, at a time when it appears to be having difficulties.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "origin-failover",
"type": "backupOrigin",
"Value": "_"’
"params": {
"errorType": "timeout",
"originConnectionTimeout": "20s",
"errorCountBeforeFailover": 10,
"timeoutErrorCacheDuration": "2h",
"backupOrigin": "backup.myorigin.com",
"customForwardHost": "somebackuporigin.com"

origin-failover members

Member Type Required Description
name Enumeratio v Setto origin-failover to add this to your
n policy to configure offload of failover detection and
recovery.
params See the v These parameters are used to define your backup
[origin- origin as well as what’s used to mark an origin as
failover. bad, in order to failover requests to that backup
origin.

Member Type Required Description
params]
array
type String v Specifies the type of failover to use if the request
meets the criteria set in the rule’s match. Set this
to backupOrigin to failover to a backup origin.
value String v This is ignored for this behavior, but required for
consistency in the API. Set the value to a dash (-).

origin-failover.params: These parameters are used to define your backup origin as well as what'’s
used to mark an origin as bad, in order to failover requests to that backup origin.

backupOrigin String v The domain name (the complete path and
hostname) or IP address of the origin serving as
your backup for failover.

customForward | String o Include this to customize what’s included in the x-
Host Forwarded-Host header, when a failover directs
the request to a backupOrigin. (This header
typically identifies the original host requested by
the client in the Host HTTP request header.)

errorCountBef | Integer o This tells Akamai how many errors of the selected
oreFailover errorType, timeout to recognize before an
origin is considered bad, and failover is applied.
As a best practice, set this to a value higher than
1. An origin shouldn’t be considered bad after only
a single failure. Note that the default for this is 0.
So, if you don’t set a value, all error requests are
failed over and the first failed request marks the
origin as bad. There are additional caveats that
apply to this member, specifically when a request
is actually failed over. See Usage caveats, below.

errorType Enumeratio v This defines the type of error that occurs to mark
n the connection as a failure. Set this to timeout to
indicate a failure once an origin connection
request times out after a specific amount of time.
Caveats apply to the use of timeout. (Currently,
only timeout is supported. You can expect
additional errorType values with a future
release.) See Usage caveats, below.

originConnect String o The amount of time that constitutes an origin
ionTimeout connection timeout and results in a failure. If you
leave this parameter out, the connection timeout
is default set to five seconds.

timeoutErrorC | String o Set an amount of time that needs to pass before a
acheDuration request retries an origin IP that was flagged as
bad, as a result of a timeout error.

Usage caveats

Consider the following usage caveats before applying this behavior.

Failover to your specified backupOrigin happens under two conditions: when a timeout request
error occurs; or when an origin receives a request after ACE has marked it as bad,because the
errorCountBeforeFailover count has been reached. (Each timeout request error counts
toward this total.) Marking an origin as bad stops connection attempts to it while it may be having
trouble.

This behavior has two primary functions: To failover error requests to a backupOrigin you specify,
and to mark an origin as “bad” after a certain number of these error requests occur, to stop further
requests to a potentially origin when it may be having trouble.

The Akamai server tries a failed connection one more time before counting it towards your
errorCountBeforeFailover.

The errorCountBeforeFailover member marks an origin as bad for the request that occurs
after the quantity you've specified, and enacts the timeoutErrorCacheDuration to stop requests
from targeting the origin for that length of time. Each subsequent request is then failed over to the
backupOrigin. For example, if you set this to six, the seventh failed request triggers the
timeoutErrorCacheDuration and the eighth and subsequent requests are failed over to your
backupOrigin.

When used with the origin behavior in a policy, set its cacheKeyType member to origin. This
keeps cache key creation for your primary origin consistent with the Origin Failover behavior cache
key creation for your backup origin.

During failover to your backup origin, the cache key is modified by adding a “b-" in the path. This
avoids cache sharing and negative Time to Live (TTL) settings that may use what is in cache instead
of accessing your specified backup origin. For example, assume a request is sent to this origin that
has been as marked as bad: /prodtest-ff.ga.akamai.com.partnerdomain.net/0D/
bird.jpg The request is rerouted to this backup origin and b- is added to the origin hostname: /b-
mde-origin.ga.akamai.com.partnerdomain.net/OD/bird.jpg

Duration values allow for settings in days (d), hours (h), minutes (m), seconds (s), and milliseconds
(ms). All default values are applied in seconds.

If you've enabled Tiered Distribution in your base configuration, origin failover is only valid for the top-
tier level. (This represents the “last hop” to your origin to request content.)

The "referer-blacklist" behavior
Include this behavior to block access based on the Referer request header.

This behavior helps verify that the client is a browser that supports RFC 2616, section 14.36, and that the
referring HTML page is served by Akamai Cloud Embed from a domain trusted by the content owner.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "referer-blacklist",
"value": "/dirl/dir2/###/dird/"

referer-blacklist members

Member Type Required Description
name Enumeratio v Enter referer-blacklist to block access
n based on the Referer request header.
value String v Enter a space-separated list of Referer header
values to disallow. Use the * wildcard to match on
a substring within the header value.

The "referer-whitelist" behavior
Include this behavior to allow access based on the Referer request header.

This behavior helps verify that the client is a browser that supports RFC 2616, section 14.36, and that the
referring HTML page is served from a domain trusted by the content owner.
Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "referer-whitelist",
"value": "www.mysite.com www.myothersite.com*"

referer-whitelist members

Member Type Required Description
name Enumeratio v Enter referer-whitelist to allow access
n based on the Referer request header.
value String 4 Enter a space-separated list of Referer header
values to allow. Use the * wildcard to match on a
substring within the header value.

The "site-failover" behavior
Include this behavior to define the alternate hostname and path to use when an Akamai edge server can’t
contact your origin server.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [

"name": "site-failover",
"type": "serve-301",
"params": {
"httpResponseStatus": "404 500:504",
"alternateHostname": "www.mysite failover.com",
"alternatePath": "/failover/mysite",
"preserveQueryString": true
}
}
]
}
site-failover members
Member Type Required Description
name Enumeratio v Enter site-failover to define an alternate
n response to serve when the edge server can’t
contact the origin server.
params See the o These are failover settings.
[site-
failover.
params]
array
type Enumeratio v Select the failover action to use. Enter
n serve-301 for 301 redirects, serve-302 for 302

redirects, or serve-alternate to send a
request to an alternate hostname and path.

site-failover.

params: These are your failover

settings.

alternateHost | String o Enter the domain of the hostname to failover to.
name Enter a dash (-) to use the original hostname
when constructing the new URL.
alternatePath String o Enter a valid URI path to failover to. Always
include the initial slash. Include the closing slash
to change the URL path but keep the original
filename. Enter a dash (-) to use the original path
when constructing the new URL.
httpResponsesS String o Enter a space-separated list of the HTTP status
tatus codes served to the client when site-failover
is not in effect. You can use integer ranges (for
example, 404, 500:504).
preserveQuery Boolean o Enter true to retain the query string from the
String original request URL, or enter false to remove

the query string.

The "token-auth" behavior

Include this behavior to use tokens to control access to content. You can choose to transmit the token in a

cookie, header, or query parameter.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": |

{

"name": "token-auth",

"value": nw_mn

4
"type": "serve-301",

"params": {

"tokenName" :
"tokenDelimiter":

" mytoken ",

"aclDelimiter": "!",
"hmacAlgorithm": "SHA256",
"escapeTokenInputs":
"ignoreQueryString":
"key": "adfl23",

"transitionKey":

nwon

true,
false,

"bced87",

"salt": "worldnewsl75892"

token-auth members

Member Type

Required

Description

name Enumeratio
n

v

Set to token-auth to use tokens to control
access to content.

See the
[token-
auth.para
ms] array

params

Use these parameters to define how tokens are
used by this behavior.

value

String

This is ignored for this match type, but required for
consistency in the API. Set the value to a dash (-).

token-auth.params: Use these parameters to define how tokens are used by this behavior.

aclDelimiter

String

O

Specifies a single character to separate access
control list (ACL) fields. You can’t use
alphanumeric characters, or any of the following
characterclass: [.& =/:%]. If you don’t specify a
value, ! is used as the delimiter.

escapeTokenlIn Boolean

puts

Set to true input values are escaped before
adding them to the token.

Member Type Required Description

hmacAlgorithm Enumeratio o Specifies the algorithm to use for the token’s hash-
n based message authentication code (HMAC) field.

Valid entries are SHA256, SHA1, or MD5.

ignoreQuerySt Boolean o Set to true query strings are removed from a

ring URL when computing the token’s HMAC
algorithm.

key String o Specifies an even number of hex digits for the
token key. An entry can be up to 64 characters in
length.

salt String o Specifies a salt for use in the token. This can be a

maximum of 250 characters, and it can’t use
characters from the following class: [~Q#%"&=/|

\ 1.
tokenDelimite String o Specifies a single character to separate the
r individual token fields. You can’t use characters

from the following class: [a-zA-20-9=&/\:%]. If
you don’t specify a value, ~ is used as the
delimiter.

tokenName String o Specifies the name of the token. Match the string
on the following regular expression: ~ ([a-zA-
Z_1[a-zA-70-9- 1%*)S.

transitionKey | String o Specifies an even number of hex digits for the
token transition key. An entry can be up to 64
characters in length.

The "url-redirect" behavior
Include this behavior to configure redirect responses for specific client requests, and stop them from
contacting the origin.

Sample

Here's a sample inclusion for this behavior in a PUT policy operation:

"matches": [],
"behaviors": [
{
"name": "url-redirect",
"type": ||301||,
"value": "_",
"params": {
"protocol": "request",
"hostname": "request",
"staticHostname": "www.somedomain.com",
"subDomain": "music",
"path": "request",
"staticPath": "/abc",
"pathPrefix": "/pre",
"pathSuffix": "/su",

"includeQueryString": true

url-redirect members

Member Type Required Description
name Enumeratio v Set url-redirect to define the URL used for a
n redirect client request.
params See the v These members are used to customize the URL
[url- used for the redirect.
redirect.
params]
array
type Integer v Specifies the type of redirect sent to the client if
the request meets the criteria set in the rule’s
match. You can choose from 301 moved
permanently, 302 found, 303 see other, or 307
temporary redirect.
value String v This is ignored for this behavior, but required for

consistency in the API. Set the value to a dash (-).

url-redirect.params: These m

embers are used to customize the URL used for the redirect.

hostname

Enumeratio
n

v

This defines the destination hostname that should
be used in the redirect URL. Allowed values
include: static to apply a unique staticPath,
addSubDomain to preface the hostname with a
subDomain in the redirect request,
replaceSubDomain to replace an existing
subDomain value with one you specify, or
request to use a subdomain already set in the
client request.

includeQueryS
tring

Boolean

When enabled, retains the query string on the
redirect request. Defaults to true.

path

Enumeratio
n

This defines how the redirect URL is constructed.
Allowed values include: static to apply a fixed
staticPath, addPrefix to preface the path in
the client request with a pathPrefix,
addSuffix to append a pathSuffix to the path
in the client request, or request to only use the
path provided in the client request.

pathIncludesF
ilename

Boolean

Include if path is setto staticPath. Indicates
whether the path also includes the filename and
extension for the redirect. Defaults to false.

pathPrefix

String

Include if path is set to addPrefix. Specifies the
prefix to add to the path in a redirect request. For
example, to redirect from the path /
example.html to /baseball/example.html,

Member

Type

Required

Description

set this to /baseball. You can’t use a single / to
specify this path. A valid path is a / followed by at
least one character.

pathSuffix

String

Include if path is set to addSuffix. The suffix to
be added to the path in a redirect request. For
example, to redirect from the path /example/
index.html to /example/football/
index.html, setthisto /football. You can’t
use a single / to specify this path. A valid path is
a / followed by at least one character.

protocol

Enumeratio
n

This defines the destination protocol to be used for
the redirect URL. Allowed values include: HTTP to
set the request to non-secure, HTTPS to set it to
secure, or request to use the protocol set in the
client request.

staticHostnam
e

String

Include if hostname is set to static. Set this to
the desired hostname for use in the redirect URL.

staticPath

String

Include if path is setto staticPath. Set this to
a static path that should be used in the redirect
URL. A valid path is a / followed by at least one
character.

subDomain

String

Include if hostname is set to addSubDomain or
replaceSubDomain. If set to addSubDomain,
specify the subdomain to preface the existing
domain. For example, to redirect from
example.comto www.m.example.com set this
value to www. If set to replaceSubDomain, set a
value to replace an existing subdomain. Include a
subdomain in the client request hostname, and
only the first subdomain is replaced. For example,
to change a redirect URL subdomain from
domain.example.com or www.example.com to
newdomain.example.com, set the value to
newdomain.

Errors

This section shows you how to handle various kinds of errors this AP| generates, and lists the range of
HTTP status codes along with their likely causes.

Error responses

The following example shows an error response for a request processed by this API:

"errorCode"

"message"

"description"

403,

"Authorization failed",
"The user is not authorized by Akamai Cloud Embed to

access the policies or subcustomers assigned to the given property id.",

"helpLink" : "https://developer.akamai.com/api/delivery-policies/
errors.html#403",
"errorInstanceId" : "31fla7532f",

}
You would expect to see a message like this if the property ID isn't valid or is not configured correctly.

HTTP status codes

This section lists the full range of response codes the API may generate.

Code Description

200 The operation was successful.

201 Resource successfully created.

202 Resource successfully accepted.

400 Bad Request.

401 Authentication failure.

403 Access is forbidden.

404 Resource not found.

408 Request timeout.

500 Internal server error.

503 Too many requests. Service is temporarily
unavailable.

What's new with Cloud Embed

Below are details on the various releases for Cloud Embed and what we've added.

2019-11-07

New Features:

+ Akamai Cloud Embed (ACE) map expansion. This lets us use the Akamai edge map without
restrictions and we expect it will improve performance for subcustomers. ACE policy activations now
take longer to complete (eight minutes versus one minute), but this update provides marked benefits
for safety and performance (improvement in throughput, latency, and time to first byte (TTFB)).

+ Live delivery optimizations. This feature provides optimizations for live streaming to ACE partners
and their customers. This is available as a new option, “streaming-video-live” in the existing “content-
characteristics” behavior.

+ Prefetching of streaming content. Prefetching positions target media content at the Edge in
anticipation of requests by end users. This reduces the time to deliver that content. The origin
housing content needs to be configured to support the origin-assist model, and prefetching is
supported for use with DASH, HLS, and Smooth streaming formats.

» Origin failover. This feature identifies primary origin connection failures based on a type you specify
and marks that origin as “bad” after connections to all its IPs fail repeatedly. Rather than issuing a
redirect to the end user, requests are failed over to a backup origin you call out.

Enhancements
+ HTTPS orchestration. We’ve made improvements to certification selection logic.
2019-05-24
New Features:
We have added support for new behaviors in a subcustomer policy:

* Request Header Rewrite: Use this behavior to modify the outgoing request headers sent from

Akamai to an origin. This also works on request headers sent from a client if the request is sent back

to the origin, but not a cache hit.

+ Response Header Rewrite: Use this behavior to modify the outgoing response headers sent from
the origin or CDN edge back to the client.

2019-03-30
New Features:
We have added support for a new behavior in a subcustomer policy:

* URL Redirect: You can include this behavior to configure redirect responses for specific client
requests, and stop them from contacting the origin.

2019-03-13

New features:

You can associate a Vanity Domain with a different Partner Domain. To accomplish this you need to do
the following:

1. Disable HTTPS for the Vanity Domain. This ensures that the vanity domain is successfully de-linked
from the current or old partner domain.

2. Enable HTTPS for the Vanity Domain with the new Partner domain.

A request to enable HTTPS on a Vanity Domain is rejected with a status “HTTP 409 - Request Conflict” in
the following scenarios:

+ If the Vanity Domain is HTTPS enabled with the old Partner Domain.
+ If there are pending changes against the old Partner Domain.
Bug fixes:

» PUT requests for /secure-delivery that have a non-empty endpoint domain are rejected with a
status “HTTP 400” and an associated message.

2019-01-17
New Features:
We have added support for new rule match criteria in a subcustomer policy:

+ Geography: You can test the requesting client’s location, either by continent, country, region, or
designated market area (DMA).

2018-11-23
New Features
We have added support for new rule match criteria in a subcustomer policy:

+ Client IP match: You can specify an individual or a range of IP addresses. If a request originates
from a specified address, the behavior applied in a policy rule is applied.

+ Cookie match: You can specify a specific cookie name, and optionally include associated cookie
values. If a request for content uses the named cookie (and optionally, the cookie values), the
behavior applied in a policy rule is applied.

Notice

Akamai secures and delivers digital experiences for the world’s largest companies. Akamai’s Intelligent Edge
Platform surrounds everything, from the enterprise to the cloud, so customers and their businesses can be
fast, smart, and secure. Top brands globally rely on Akamai to help them realize competitive advantage
through agile solutions that extend the power of their multi-cloud architectures. Akamai keeps decisions,
apps, and experiences closer to users than anyone — and attacks and threats far away. Akamai’s portfolio
of edge security, web and mobile performance, enterprise access, and video delivery solutions is supported
by unmatched customer service, analytics, and 24/7/365 monitoring. To learn why the world’s top brands
trust Akamai, visit www.akamai.com, blogs.akamai.com, or @Akamai on Twitter. You can find our global
contact information at www.akamai.com/locations.

Akamai is headquartered in Cambridge, Massachusetts in the United States with operations in more than 57
offices around the world. Our services and renowned customer care are designed to enable businesses to
provide an unparalleled Internet experience for their customers worldwide. Addresses, phone numbers, and
contact information for all locations are listed on www.akamai.com/locations.

© 2021 Akamai Technologies, Inc. All Rights Reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system or translated into any language in any form by any
means without the written permission of Akamai Technologies, Inc. While precaution has been taken in the
preparation of this document, Akamai Technologies, Inc. assumes no responsibility for errors, omissions, or
for damages resulting from the use of the information herein. The information in this document is subject to
change without notice. Without limitation of the foregoing, if this document discusses a product or feature in
beta or limited availability, such information is provided with no representation or guarantee as to the matters
discussed, as such products/features may have bugs or other issues.

Akamai and the Akamai wave logo are registered trademarks or service marks in the United States (Reg.
U.S. Pat. & Tm. Off). Akamai Intelligent Edge Platform is a trademark in the United States. Products or
corporate names may be trademarks or registered trademarks of other companies and are used only for
explanation and to the owner's benefit, without intent to infringe.

Published 11/2021

	Contents
	Welcome to Akamai Cloud Embed
	What is a CDN?
	You should be familiar with these terms
	The Akamai Cloud Embed workflow

	The base configuration vs. the delivery policy
	Set up a base configuration
	Before you begin
	Enable ACE for your account
	You need to gather specific information
	Secure delivery (HTTPS)
	You need these advanced behaviors

	Create a new property
	Define property hostnames
	Property hostname use cases

	Configure the "Default Rule"
	The Origin Server behavior
	I selected "NetStorage" as my Origin Type
	I selected "Your Origin" as my Origin Type

	Content Provider Code and ACE
	The Caching behavior
	The Log Request Details behavior
	The Subcustomer Enablement behavior
	The InstantConfig behavior
	The Allow POST behavior
	The Allow PUT behavior
	The Allow DELETE behavior
	Auto Domain Validation
	You can configure optional behaviors
	Content Characteristics - Dynamic Web Content
	Content Characteristics - Streaming Video On-demand
	Content Characteristics - Large File
	Real-time Reporting

	Review the other rules
	The Content Compression rule
	The Static Content rule
	The Dynamic Content rule
	The Default CORS Policy rule

	Set up subcustomers via the ACE API
	Before you begin with the API
	Register subcustomers
	List all of your subcustomers
	View a specific subcustomer
	Remove a subcustomer
	List all sub-properties for a base configuration
	List all domains for a subcustomer

	Create a delivery policy for each subcustomer
	Example request body for a policy
	How to structure a rule
	Nest matches
	Include multiple behaviors
	Supported matches and behaviors
	Examples of match and behavior combinations

	View a specific policy
	Delete a policy
	Review a policy's history
	Map expansion and ACE API operations
	A simple test of a policy

	Other recommended tasks
	Go live
	Add dynamic web content support for a subcustomer
	Prerequisites for dynamic web content
	Set up dynamic web content

	Add live video support for a subcustomer
	Set up live video in a policy

	Add on demand video support for a subcustomer
	Enable on demand video in your base config.
	Set up on demand video

	Add prefetching support for video
	What can be prefetched
	Use the origin-assist scheme
	What Origin Type can I use?
	How an origin triggers prefetching

	Add large file delivery support for a subcustomer
	Prerequisites
	Support for large file delivery

	Upgrade a request from HTTP to HTTPS
	The Akamai Cloud Embed API v2
	The ACE API workflow
	Resources
	List all subcustomers
	Get a subcustomer
	Add a new subcustomer
	Remove a subcustomer
	List all sub-properties for a base configuration
	List all subcustomer domains
	Get a policy
	Create or update a policy
	Delete a policy
	Get policy history
	Get latest active policy

	Data
	SubCustomer
	SubProperty
	Policy
	The "client-ip" match
	The "cookie" match
	The "geography" match
	The "header" match
	The "host-name" match
	The "http-method" match
	The "url-extension" match
	The "url-filename" match
	The "url-path" match
	The "url-querystring" match
	The "url-scheme" match
	The "url-wildcard" match
	The "access-control" behavior
	The "cachekey-query-args" behavior
	The "caching" behavior
	The "content-characteristics-dynamic-web-content" behavior
	The "content-characteristics-large-files" behavior
	The "content-characteristics-on-demand-streaming" behavior
	The "content-characteristics-live-streaming" behavior
	The "content-compression" behavior
	The "content-refresh" behavior
	The "downstream-caching" behavior
	The "geo-blacklist" behavior
	The "geo-whitelist" behavior
	The "ip-blacklist" behavior
	The "ip-whitelist" behavior
	The "modify-outgoing-request-header" behavior
	The "modify-outgoing-request-path" behavior
	The "modify-outgoing-response-header" behavior
	The "origin" behavior
	The "origin-characteristics" behavior
	The "origin-failover" behavior
	The "referer-blacklist" behavior
	The "referer-whitelist" behavior
	The "site-failover" behavior
	The "token-auth" behavior
	The "url-redirect" behavior

	Errors

	What's new with Cloud Embed
	Notice

